PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual laboratory methodology in scientific researches and education

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article is presenting the Material Science Virtual Laboratory. Developed laboratory is an open scientific, investigative, simulating and didactic medium helpful in the realisation of the scientific and didactic tasks in the field of material Science. It is implemented in the Institute of Engineering Materials and Biomaterials of Silesian University of Technology in Gliwice, Poland. Design/methodology/approach: The laboratory is a set of testers and training simulators, set in the Virtuality and created in several languages and the programming techniques, which interprets the properties, functionality and manual rules of actual equipment installed and accessible in the real science labs of scientific universities. Findings: Application of the equipment, that is practically imperishable, cheap in exploitation and ease in the use encourages students and scientific workers to independent audits and experiments in places, where the possibilities of their performance in the real investigative laboratory will be restricted because of the high material costs, difficult access to real equipment or the possible peril of his impairment. Research limitations/implications: The proposed solutions allow the utilisation of the developed virtual environment as a new medium in both, the scientific work performed remotely, as well as in education during classes. Practical implications: The usage possibilities of the virtual laboratory are practically unrestricted; it can be a foundation for any surveys, course or training plan. Originality/value: The project of the virtual laboratory corresponds with the global tendency for expand the investigative and academic centres about the possibilities of training and experiments performance with use of the virtual reality. This enriches investigation and training programmes of the new abilities reserved so far exclusively for effecting only on actual equipment.
Rocznik
Strony
76--84
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Director of Science Centre and Supervisory Board Chairman, Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS in Gliwice, ul. Jana III Sobieskiego 12/1, 44-100 Gliwice, Poland
Bibliografia
  • [1] R. Honysz, Materials design methodology with use of materials science virtual laboratory,PhD thesis, Institute of Engineering Materials and Biomaterials, 2010.
  • [2] L.A. Dobrzański, The descriptive metallography of iron alloys, Silesian University Publishing, Gliwice, 2007 (in Polish).
  • [3] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw-Gliwice, 2004 (in Polish).
  • [4] L.A. Dobrzański, R. Honysz, Analysis system of the influence of chemical compositions. The parameters of the heat and plastic treatment on mechanical properties of structural steels, Proceedings of the XXXVII Materials Science School, Cracow, 2009, 385-391.
  • [5] L.A. Dobrzański, R. Honysz, Application of materials science virtual laboratory in traditional and distance learning, Proceedings of V Polish-Ukrainian Young Scientists Conference, Bukowina Tatrzańska, 2007.
  • [6] L.A. Dobrzański, R. Honysz, Materials science virtual laboratory as an example of the computer aid in materials engineering, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 219-222.
  • [7] J. Nijhuis, M. Segers, W. Gijselaers, Influence of redesigning a learning environment on student perceptions and learning strategies, Learning Environments Research 8/1 (2005) 67-93.
  • [8] A. Mucha, Virtual machines, Engineering Design and Construction 5/8 (2008) 34-38.
  • [9] L.A. Dobrzański, R. Honysz, Building methodology of virtual laboratory posts for materials science virtual laboratory purposes, Archives of Materials Science and Engineering 28/1 (2007) 695-700.
  • [10] C. Manetta, R. Blade, Glossary of virtual reality terminology, Innovative technologies in product design, Proceedings of the MACH-TOOL’2005, Poznan, 2005.
  • [11] L.A. Dobrzański, R. Honysz, Computer modeling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 119-126.
  • [12] L.A. Dobrzański, R. Honysz, S. Fassois, On the identification of composite beam dynamics based upon experimental data, Journal of Achievements in Materials and Manufacturing Engineering 16/1-2 (2006) 429-432.
  • [13] M.E. Auer, Virtual lab versus remote lab, Proceedings of the Remote Engineering and Virtual Instrumentation REV’2004, Vien, Austria, 2000.
  • [14] L.A. Dobrzański, R. Honysz, Development of the virtual light microscope for a material science virtual laboratory, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 571-574.
  • [15] L.A. Dobrzański, R. Honysz, Materials science virtual laboratory – innovatory didactic tool in the teaching of material engineering performed by traditional and e-learning methods, Acta Mechanica et Automatica 2/4 (2008) 5-10.
  • [16] Ł. Maciejewski, Remote success system to the dynamics laboratory resources over the internet, Internet Systems 6/1-2 (2001).
  • [17] L.A. Dobrzański, R. Honysz, The significance of multimedia didactic aids in the informative society, Archives of Materials Science and Engineering 32/2 (2008) 117-120.
  • [18] B.Bidzinski, W. Gryga, J. Nalepa, Virtual posts In laboratory of metrology, Proceedings of the 16th Intercollegiate Metrology Conference MKM, Cracow (in Polish).
  • [19] L.A. Dobrzański, R. Honysz, On the implementation of virtual machines in computer aided education, Journal of Materials Education 31/1-2 (2009) 131-140.
  • [20] L.A. Dobrzański, R. Honysz, The idea of material science virtual laboratory, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 196-203.
  • [21] L.A. Dobrzański, A. Jagiełło, R. Honysz, Virtual tensile test machine as an example of material science virtual laboratory post, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 207-210.
  • [22] Y. Yao, C. Liu, Z. Yuan, Y. Lu, Robustness improvement of tool life estimation assisted by a virtual manufacturing cell, Journal of Materials Processing Technology 172 (2006) 445-450.
  • [23] K. Saanouni, Virtual metal forming including the ductile damage occurrence actual state of the art and main perspectives, Journal of Materials Processing Technology 177 (2006) 19-25.
  • [24] D. Korves, M. Loftus, Designing an immersive virtual reality interface for layout planning, Journal of Materials Processing Technology 107 (2000) 425-430.
  • [25] Y. Yao, H. Zhao, J. Li, Z. Yuan, Modelling of virtual workpiece with machining errors representation in turning, Journal of Materials Processing Technology 172 (2006) 437-444.
  • [26] D. Sua, D. Qin, Integration of numerical analysis, virtual simulation and finite element analysis for the optimum design of worm gearing, Journal of Materials Processing Technology 138 (2003) 429-435.
  • [27] W.B. Lee, C.F. Cheung, J.G. Li, Applications of virtual manufacturing in materials processing, Journal of Materials Processing Technology 113 (2001) 416-423.
  • [28] Ch. Hindman, K.B. Ousterhout, A virtual design system for sheet metal forming, Journal of Materials Processing Technology 84 (1998) 107-116.
  • [29] J.S. Bao, Y. Jin, M.Q. Yan, D.Z. Ma, Immersive virtual product development, Journal of Materials Processing Technology 129 (2002) 592-596.
  • [30] M. Iqbal, M.S.J. Hashimi, Design and analysis of a virtual factory layout, Journal of Materials Processing Technology 118 (2001) 403-410.
  • [31] H.Y.K. Lau, K.L. Mak, M.T.H. Lu, a virtual design platform for interactive product design and visualization, Journal of Materials Processing Technology 139 (2003) 402-407.
  • [32] T.S. Mujber, T. Szecsi, M.S.J. Hashmi, Virtual reality applications in manufacturing process simulation, Journal of Materials Processing Technology 155-156 (2004) 1834-1838.
  • [33] T.Y. Wang, G.F. Wang, H.W. Li, J.B. Lin, Z.Y. Wu, Construction of a realistic scene in virtual turning based on a global illumination model and chip simulation, Journal of Materials Processing Technology 129 (2002) 524-528.
  • [34] S. Jirathearanat, V. Vazquez, C.A. Rodríguez, T. Altan, Virtual processing – application of rapid prototyping for visualization of metal forming processes, Journal of Materials Processing Technology 98 (2000) 116-124.
  • [35] J.M. Ritchie, J.E.L. Simmons, R.G. Dewar, Designing cable harness assemblies in virtual environments, Journal of Materials Processing Technology 107 (2000) 37-43.
  • [36] C. Shen, Y. Zhang, J. Kong, S.F. Lee, W.C. Kwong. Re-usable component design for supporting 3D modelling and simulation relevance feedback icon, Journal of Materials Processing Technology 139 (2003) 624-627.
  • [37] Q. Peng, F.R. Hall, P.M. Lister, Application and evaluation of VR-based CAPP system, Journal of Materials Processing Technology 107/1 (2000) 153-159.
  • [38] M.A. Bossak, Simulation based design, Journal of Materials Processing Technology 76 (1998) 8-11.
  • [39] http://www.vlab.polsl.pl
  • [40] http://www.platforma.imiib.polsl.pl/
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32fbd98c-93b3-4c75-8d21-34f75b3de856
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.