Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nanoindentation test was employed to measure the actual hardness and yield strength of the stir zone in the friction stir-welded single-phase brass joints. For this aim, different joints were prepared according to an experimental matrix based on the central composite rotatable design. In this design matrix, the tool rotational speed, tool traverse speed, and tool axial force were the input parameters. The outputs were the hardness and yield strength of the joints. To measure the hardness and tensile strength of the joints, the nanoindentation test was employed. Moreover, electron back scattered diffraction and transmission electron microscopy techniques were used to study the microstructural features. The results showed that by decreasing rotational speed and axial force, and by increasing the traverse speed, the hardness and yield strength of the joints were increased. In other words, lower heat inputs caused higher strength in the joints. Finer grain sizes, larger grain average misorientation amounts, i.e., existence of more dislocations, and greater Taylor factors in the lower heat input joints revealed that the influence of grain boundaries, dislocations, and texture were the origins of better mechanical properties.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
158--166
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
- ac.heydarzadeh@azaruniv.ac.ir
- Department of Materials Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
autor
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1459853849, Iran
autor
- Department of Industrial Engineering, Hacettepe University, 06800 Ankara, Turkey
autor
- Department of Industrial Engineering, Hacettepe University, 06800 Ankara, Turkey
Bibliografia
- [1] Çam G. Friction stir welded structural materials: beyond Alalloys. Int Mater Rev. 2011;56(1):1–48.
- [2] Zolghadr P, Akbari M, Asadi P. Formation of thermo-mechanically affected zone in friction stir welding. Mater Res Express. 2019;6(8):086558.
- [3] Çam G, İpekoğlu G. Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol. 2017;91(5):1851–66.
- [4] Akbari M, Asadi P. Optimization of microstructural and mechanical properties of friction stir welded A356 pipes using Taguchi method. Mater Res Express. 2019;6(6):066545.
- [5] Mironov S, Sato YS, Kokawa H. Friction-stir welding and processing of Ti–6Al–4 V titanium alloy: a review. J Mater Sci Technol. 2018;34(1):58–72.
- [6] Heidarzadeh A, Saeid T. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater Sci Eng, A. 2016;649:349–58.
- [7] Wang YF, An J, Yin K, Wang MS, Li YS, Huang CX. Ultrafinegrained microstructure and improved mechanical behaviors of friction stir welded Cu and Cu–30Zn joints. Acta Metall Sin (Engl. Lett.). 2018;31:878.
- [8] Heidarzadeh A, Saeid T. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 2016. https ://doi.org/10.1007/s1259 8-016-0704-9.
- [9] Mironov S, Inagaki K, Sato YS, Kokawa H. Development of grain structure during friction-stir welding of Cu–30Zn brass. Phil Mag. 2014;94(27):3137–48.
- [10] Heidarzadeh A, Saeid T, Klemm V. Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy. Mater Charact. 2016;119:84–91.
- [11] Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H. Correction to: microstructure evolution of Cu–30Zn during friction stir welding. J Mater Sci. 2018;53(15):11130.
- [12] Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Sci Technol Weld Join. 2019;24(4):352–9.
- [13] Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. J Mater Sci Technol. 2019;35(7):1412–21.
- [14] Xu N, Feng RN, Guo WF, Song QN, Bao YF. Effect of Zener–Hollomon parameter on microstructure and mechanical properties of copper subjected to friction stir welding. Acta Metall Sin. 2019;33:319.
- [15] Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H. Strain rate dependent micro-texture evolution in friction stir welding of copper. Materialia. 2019;6:100302.
- [16] Heidarzadeh A, Saeid T, Klemm V, Chabok A, Pei Y. Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys. Mater Des. 2019;162:185–97.
- [17] Charitidis CA, Dragatogiannis DA, Koumoulos EP, Kartsonakis IA. Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation. Mater Sci Eng A. 2012;540:226–34.
- [18] Koumoulos EP, Charitidis CA, Daniolos NM, Pantelis DI. Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Mater Sci Eng B. 2011;176(19):1585–9.
- [19] Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49(19):3899–918.
- [20] Barenji RV, Pourasl HH, Khojastehnezhad VM. Electrical discharge machining of the AISI D6 tool steel: prediction and modeling of the material removal rate and tool wear ratio. Precis Eng. 2016;45:435–44.
- [21] Eshghi AT, Lee S. Adaptive improved response surface method for reliability-based design optimization. Eng Opt. 2019;51:1–19.
- [22] Etter AL, Baudin T, Fredj N, Penelle R. Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng, A. 2007;445–446:94–9.
- [23] Heidarzadeh A. Tensile behavior, microstructure, and substructure of the friction stir welded 70/30 brass joints: RSM EBSD, and TEM study. Arch Civil Mech Eng. 2019;19(1):137–46.
- [24] Heidarzadeh A, Motalleb-nejad P, Barenji RV, Khalili V, Güleryüz G. The origin of the maximum hardness of the friction stir welded single-phase Cu–Zn plates: RSM EBSD, and TEM investigation. Mater Chem Phys. 2019;223:9–15.
- [25] McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater. 2008;58(5):349–54.
- [26] Sun YF, Xu N, Fujii H. The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. Mater Sci Eng A. 2014;589:228–34.
- [27] Liu X, Sun Y, Nagira T, Ushioda K, Fujii H. Microstructure evolution of Cu–30Zn during friction stir welding. J Mater Sci. 2018;53(14):10423–41.
- [28] Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1):1–78.
- [29] Besharati-Givi M, Asadi P. Advances in friction stir welding and processing. Cambridge: Elsevier-Woodhead Publishing; 2014.
- [30] Starink MJ, Deschamps A, Wang SC. The strength of friction stir welded and friction stir processed aluminium alloys. Scripta Mater. 2008;58(5):377–82.
- [31] Starink MJ, Wang SC. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 2003;51(17):5131–50.
- [32] Benson DJ, Fu H-H, Meyers MA. On the effect of grain size on yield stress: extension into nanocrystalline domain. Mater Sci Eng A. 2001;319–321:854–61.
- [33] Schulson EM, Weihs TP, Viens DV, Baker I. The effect of grain size on the yield strength of Ni3Al. Acta Metall. 1985;33(9):1587–91.
- [34]. Wang S, Zhu Z, Starink M. Estimation of dislocation densities in cold rolled Al–Mg–Cu–Mn alloys by combination of yield strength data, EBSD and strength models. J Microsc. 2005;217(2):174–8.
- [35] Sastry SML. The effect of grain size on yield stress and work hardening in Cu3Au. Mater Sci Eng. 1976;22:237–43.
- [36] Tian YZ, Gao S, Zhao LJ, Lu S, Pippan R, Zhang ZF, Tsuji N. Remarkable transitions of yield behavior and Lüders deformation in pure Cu Cu by changing grain sizes. Scripta Mater. 2018;142:88–91.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32fb11fd-74ff-46c2-aa59-8adde6ad4350