PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A novel adaptive window based technique for T wave detection and delineation in the ECG

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrocardiogram (ECG) morphology determines the overall activity of the heart and is the most widely used tool in the diagnostic processes. T wave is a crucial wave component that reveals very useful information regarding various cardiac disorders. In this paper we have proposed a novel T wave detection technique based on adaptive window and simple decision rule. The proposed technique uses two-stage median filters followed by the Savitzky-Golay filter at the pre-processing stage to remove the noises in the ECG signal. The QRS complex is detected for locating the T wave as a reference in one ECG cycle. An R-R interval based window is considered for detecting the T wave, and decision logic depends on the iso-electric line value. The proposed technique is tested on the QT database and self-recorded dataset for its performance evaluation. In the present work, the results achieved for T wave detection sensitivity (Se), positive predictivity (+P), detection error rate (DER), and accuracy (Acc) on the QT database are Se = 97.57%, +P = 99.63%, DER = 2.78%, and Acc = 97.22% with an average time error of (3.468 ± 5.732) ms. The proposed technique shows Se = 99.94%, +P = 99.94%, DER = 0.01%, and Acc = 99.89% on the self-recorded dataset. The proposed technique is also capable of detecting both the upward and downward T wave efficiently in the ECG signal.
Słowa kluczowe
Rocznik
Strony
art. no. 20190064
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Electronics and Communication Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
autor
  • Department of Computer Science and Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
Bibliografia
  • [1] Rangayyan RM. Biomedical signal analysis: a case-study approach. New York: Wiley-IEEE Press, 2009.
  • [2] Hall JE, Guyton AC. Textbook of medical physiology. Philadelphia, PA: Saunders/Elsevier, 2011.
  • [3] Raj S, Ray KC, Shankar O. Development of robust, fast and efficient QRS complex detector: a methodological review. Australas Phys Eng Sci Med 2018;41:581-600.
  • [4] Rahul J, Sora M, Sharma LD. An overview on biomedical signal analysis. Int J Recent Technol Eng 2019;7:206-9.
  • [5] Kashani A, Barold SS. Significance of QRS complex duration in patients with heart failure. J Am Coll Cardiol 2005;46:2183-92.
  • [6] Curtin AE, Burns KV, Bank AJ, Netoff TI. QRS complex detection and measurement algorithms for multichannel ECGs in cardiac resynchronization therapy patients. IEEE J Transl Eng Health Med 2018;6:1900211.
  • [7] Thaler MS. The only EKG book you’ll ever need. Philadelphia: Lippincott Williams and Wilkins, 2010.
  • [8] Arif M. Malagore IA, Afsar FA. Detection and localization of myocardial infarction using k nearest neighbor classifier. J Med Syst 2012;36:279-89.
  • [9] Nemati S, Abdala O, Monasterio V, Yim-Yeh S, Malhotra A, Clifford GD. A nonparametric surrogate based test of significance for T-wave alternans detection. IEEE Trans Biomed Eng 2011;58:1356-64.
  • [10] Esteban G, Barquero O, Blanco M, Caamano A, Garcia A, Rojo-Alvarez JL. Nonparametric signal processing validation in T-wave alternans detection and estimation. IEEE Trans. Biomed Eng 2014;61:1328-38.
  • [11] Sharma LD, Sunkaria RK. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 2016;87:194-204.
  • [12] Dohare AK, Kumar V, Kumar R. An efficient new method for the detection of QRS in electrocardiogram. Comput Electr Eng 2014;40:1717-30.
  • [13] Hamdi S, Ben AA, Bedoui MH. Real time QRS complex detection using DFA and regular grammar. Biomed Eng Online 2017;16:31.
  • [14] Pandit D, Zhang L, Liu C, Chattopadhyay S, Aslam N, Lim CP. A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput Methods Programs Biomed 2017;144:61-75.
  • [15] Yakut O, Bolat ED. An improved QRS complex detection method having low computational load. Biomed Signal Proces 2018;42:230-41.
  • [16] Cesari M, Mehlsen J, Mehlsen AB, Sorensen HBD. A new wavelet-based ECG delineator for the evaluation of the ventricular innervation. IEEE J Transl Eng Health Med 2017;5:1-15.
  • [17] Chen PC, Lee S, Kuo CD. Delineation of T-wave in ECG by wavelet transform using multi scale differential operator. IEEE Trans Biomed Eng 2006;53:1429-33.
  • [18] Madeiro JP, Santos EM, Cortez PC, Felix JH, Schlindwein FS. Evaluating Gaussian and Rayleigh-based mathematical models for T and P-waves in ECG. IEEE Latin Am Trans 2017;15:843-53.
  • [19] Saini I, Singh D, Khosla A. K-nearest neighbor based algorithm for P-and T-waves detection and delineation. J Med Eng Technol 2014;38:115-24.
  • [20] Madeiro J, Nicolson WB, Cortez PC, Marques JA, Vázquez-Seisdedos CR, Elangovan N, et al. New approach for T-wave peak detection and T-wave end location in 12-lead paced ECG signals based on a mathematical model. Med Eng Phys 2013;35:1105-15.
  • [21] Sharma LD, Kumar S. Novel T-wave detection technique with minimal processing and RR interval based enhanced efficiency. Cardiovasc Eng Technol 2019;10:367-9.
  • [22] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000;101:e215-20.
  • [23] Laguna P, Mark RG, Goldberger AL, Moody GB. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Comput Cardiol 1997;24:673-6.
  • [24] Press WH, Teukolsky SA. Savitzky-Golay smoothing filters. Comput Phys 1990;4:669–72.
  • [25] Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964;36:1627-39.
  • [26] Sauvola J, Pietikainen M. Adaptive document image binarization. Pattern Recognit 2000;33:225-36.
  • [27] Leutheuser H, Gradl S, et al. Instantaneous P and T-wave detection: assessment of three ECG fiducial points detection algorithms. In 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2016;329-34.
  • [28] Elgendi M, Eskofier B, Abbott D. Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sensors (Basel) 2015;15:17693-714.
  • [29] Mehta SS, Lingayat NS. Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Comput Methods Prog Biomed 2009;93:46-60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32f9d3ca-01be-44d4-9167-851103f70326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.