Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The electrocardiogram (ECG) morphology determines the overall activity of the heart and is the most widely used tool in the diagnostic processes. T wave is a crucial wave component that reveals very useful information regarding various cardiac disorders. In this paper we have proposed a novel T wave detection technique based on adaptive window and simple decision rule. The proposed technique uses two-stage median filters followed by the Savitzky-Golay filter at the pre-processing stage to remove the noises in the ECG signal. The QRS complex is detected for locating the T wave as a reference in one ECG cycle. An R-R interval based window is considered for detecting the T wave, and decision logic depends on the iso-electric line value. The proposed technique is tested on the QT database and self-recorded dataset for its performance evaluation. In the present work, the results achieved for T wave detection sensitivity (Se), positive predictivity (+P), detection error rate (DER), and accuracy (Acc) on the QT database are Se = 97.57%, +P = 99.63%, DER = 2.78%, and Acc = 97.22% with an average time error of (3.468 ± 5.732) ms. The proposed technique shows Se = 99.94%, +P = 99.94%, DER = 0.01%, and Acc = 99.89% on the self-recorded dataset. The proposed technique is also capable of detecting both the upward and downward T wave efficiently in the ECG signal.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 20190064
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Electronics and Communication Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
autor
- Department of Computer Science and Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
Bibliografia
- [1] Rangayyan RM. Biomedical signal analysis: a case-study approach. New York: Wiley-IEEE Press, 2009.
- [2] Hall JE, Guyton AC. Textbook of medical physiology. Philadelphia, PA: Saunders/Elsevier, 2011.
- [3] Raj S, Ray KC, Shankar O. Development of robust, fast and efficient QRS complex detector: a methodological review. Australas Phys Eng Sci Med 2018;41:581-600.
- [4] Rahul J, Sora M, Sharma LD. An overview on biomedical signal analysis. Int J Recent Technol Eng 2019;7:206-9.
- [5] Kashani A, Barold SS. Significance of QRS complex duration in patients with heart failure. J Am Coll Cardiol 2005;46:2183-92.
- [6] Curtin AE, Burns KV, Bank AJ, Netoff TI. QRS complex detection and measurement algorithms for multichannel ECGs in cardiac resynchronization therapy patients. IEEE J Transl Eng Health Med 2018;6:1900211.
- [7] Thaler MS. The only EKG book you’ll ever need. Philadelphia: Lippincott Williams and Wilkins, 2010.
- [8] Arif M. Malagore IA, Afsar FA. Detection and localization of myocardial infarction using k nearest neighbor classifier. J Med Syst 2012;36:279-89.
- [9] Nemati S, Abdala O, Monasterio V, Yim-Yeh S, Malhotra A, Clifford GD. A nonparametric surrogate based test of significance for T-wave alternans detection. IEEE Trans Biomed Eng 2011;58:1356-64.
- [10] Esteban G, Barquero O, Blanco M, Caamano A, Garcia A, Rojo-Alvarez JL. Nonparametric signal processing validation in T-wave alternans detection and estimation. IEEE Trans. Biomed Eng 2014;61:1328-38.
- [11] Sharma LD, Sunkaria RK. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency. Measurement 2016;87:194-204.
- [12] Dohare AK, Kumar V, Kumar R. An efficient new method for the detection of QRS in electrocardiogram. Comput Electr Eng 2014;40:1717-30.
- [13] Hamdi S, Ben AA, Bedoui MH. Real time QRS complex detection using DFA and regular grammar. Biomed Eng Online 2017;16:31.
- [14] Pandit D, Zhang L, Liu C, Chattopadhyay S, Aslam N, Lim CP. A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput Methods Programs Biomed 2017;144:61-75.
- [15] Yakut O, Bolat ED. An improved QRS complex detection method having low computational load. Biomed Signal Proces 2018;42:230-41.
- [16] Cesari M, Mehlsen J, Mehlsen AB, Sorensen HBD. A new wavelet-based ECG delineator for the evaluation of the ventricular innervation. IEEE J Transl Eng Health Med 2017;5:1-15.
- [17] Chen PC, Lee S, Kuo CD. Delineation of T-wave in ECG by wavelet transform using multi scale differential operator. IEEE Trans Biomed Eng 2006;53:1429-33.
- [18] Madeiro JP, Santos EM, Cortez PC, Felix JH, Schlindwein FS. Evaluating Gaussian and Rayleigh-based mathematical models for T and P-waves in ECG. IEEE Latin Am Trans 2017;15:843-53.
- [19] Saini I, Singh D, Khosla A. K-nearest neighbor based algorithm for P-and T-waves detection and delineation. J Med Eng Technol 2014;38:115-24.
- [20] Madeiro J, Nicolson WB, Cortez PC, Marques JA, Vázquez-Seisdedos CR, Elangovan N, et al. New approach for T-wave peak detection and T-wave end location in 12-lead paced ECG signals based on a mathematical model. Med Eng Phys 2013;35:1105-15.
- [21] Sharma LD, Kumar S. Novel T-wave detection technique with minimal processing and RR interval based enhanced efficiency. Cardiovasc Eng Technol 2019;10:367-9.
- [22] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000;101:e215-20.
- [23] Laguna P, Mark RG, Goldberger AL, Moody GB. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Comput Cardiol 1997;24:673-6.
- [24] Press WH, Teukolsky SA. Savitzky-Golay smoothing filters. Comput Phys 1990;4:669–72.
- [25] Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964;36:1627-39.
- [26] Sauvola J, Pietikainen M. Adaptive document image binarization. Pattern Recognit 2000;33:225-36.
- [27] Leutheuser H, Gradl S, et al. Instantaneous P and T-wave detection: assessment of three ECG fiducial points detection algorithms. In 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2016;329-34.
- [28] Elgendi M, Eskofier B, Abbott D. Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sensors (Basel) 2015;15:17693-714.
- [29] Mehta SS, Lingayat NS. Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Comput Methods Prog Biomed 2009;93:46-60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32f9d3ca-01be-44d4-9167-851103f70326