Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An investigation of unsteady hydromagnetic free convection flow of a viscous, incompressible and electrically conducting fluid past an impulsively moving vertical plate with Newtonian surface heating embedded in a porous medium taking into account the effects of Hall current is carried out. The governing partial differential equations are first subjected to the Laplace transformation and then inverted numerically using INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by the Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. The numerical solutions for velocity and temperature are plotted graphically whereas the numerical results of skin friction and the Nusselt number are presented in tabular form for various parameters of interest. The present solution in special case is compared with a previously obtained solution and is found to be in excellent agreement.
Rocznik
Tom
Strony
187--203
Opis fizyczny
Bibliogr. 61 poz., tab., wykr.
Twórcy
autor
- Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004, INDIA
autor
- Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004, INDIA
autor
- Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004, INDIA
Bibliografia
- [1] Cheng P. and Minkowycz W.J. (1977): Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike.– J. Geophys. Res., vol.82, pp.2040–2044.
- [2] Nakayama A. and Koyama H. (1987): A general similarity transformation for combined free and forced convection flows within a fluid saturated porous medium. – ASME J. Heat Transf., vol.109, pp.1041–1045.
- [3] Lai F.C. and Kulacki F.A. (1991): Non-Darcy mixed convection along a vertical wall in a saturated porous medium. – ASME J. Heat Transf., vol.113, pp.252–254.
- [4] Bakier A.Y., Mansour M.A., Gorla R.S.R. and Ebiana A.B. (1997): Nonsimilar solutions for free convection from a vertical plate in porous media. – Heat Mass Transf., vol.33, pp.145–148.
- [5] Nield D.A. and Bejan A. (2006): Convection in Porous Media, Third Ed., Springer. New York:
- [6] Ingham D.B. and Pop I. (2005): Transport Phenomena in Porous Media. – vol. III, Elsevier, Oxford. U. K.
- [7] Vafai K. (2005): Handbook of Porous Media. – Second Ed., Taylor & Francis, New York.
- [8] Pop I. and Ingham D.B. (2001): Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media., Pergamon. Oxford, U. K.
- [9] Ingham D.B., Bejan A., Mamut E. and Pop I. (2004): Emerging Technologies and Techniques in Porous Media., Kluwer, Dordrecht, Netherlands.
- [10] Bejan A., Dincer I., Lorente S., Miguel A.F. and Reis A.H. (2004): Porous and Complex Flow Structures in Modern Technologies, Springer, New York.
- [11] Merkin J.H. (1994): Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. – Int. J. Heat Fluid Flow, vol.15, pp.392–398.
- [12] Lesnic D., Ingham D.B., and Pop I. (1999): Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating.– Int. J. Heat Mass Transf., vol.42, pp.2621–2627.
- [13] Lesnic D., Ingham D.B. and Pop I. (2000): Free convection from a horizontal surface in a porous medium with Newtonian heating. – J. Porous Med., vol.3, pp.227–235.
- [14] Lesnic D., Ingham D.B., Pop I. and Storr C. (2004): Free convection boundary-layer flow above a nearly horizontal surface in a porous medium with Newtonian heating.– Heat Mass Transf., vol.40, pp.665–672.
- [15] Salleh M.Z., Nazar R. and Pop I. (2009): Forced convection boundary layer flow at a forward stagnation point with Newtonian heating. – Chem. Eng. Comm., vol.196, pp.987–996.
- [16] Salleh M.Z., Nazar R. and Pop I. (2010): Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. – J. Taiwan Inst. Chem. Engineers, vol.41, pp.651–655.
- [17] Chaudhary R.C. and Jain P. (2006): Unsteady free convection boundary-layer flow past an impulsively started vertical plate with Newtonian heating. – Rom. J. Phys., vol.51, pp.911–925.
- [18] Mebine P. and Adigio E.M. (2009): Unsteady free convection flow with thermal radiation past a vertical porous plate with Newtonian heating. – Turk. J. Phys., vol.33, pp.109–119.
- [19] Narahari M. and Ishak A. (2011): Radiation effects on free convection flow near a moving vertical plate with Newtonian heating. – J. Appl. Sci., vol.11, pp.1096–1104.
- [20] Narahari M. and Nayan M.Y. (2011): Free convection flow past an impulsively started infinite vertical plate with Newtonian heating in the presence of thermal radiation and mass diffusion.– Turk. J. Eng. Env. Sci., vol.35, pp.187–198.
- [21] Olanrewaju A.M. and Makinde O.D. (2013): On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating.– Chem. Eng. Comm., vol.200, pp.836–852.
- [22] Steg L. and Sutton G.W. (1960): Prospects of MHD Power Generation. – Astronautics, Vol.5, pp.22–25.
- [23] Womac G.J. (1969): MHD Power Generation. – London: Chapman and Hall.
- [24] Shercliff J.A. (1962): The Theory of Electromagnetic Flow–Measurement. – Cambridge: CUP.
- [25] Blake L.R. (1957): Conduction and induction pumps for liquid metals. – Proc. Inst. Elec. Engrs. London, vol.104A, pp.49–62.
- [26] Marston C.H. (1966): MHD accelerator performance for specified interaction parameter. – AIAA Journal, vol.4, No.11, pp.2078–2079. doi: 10.2514/3.3858
- [27] Christofilos N.C. (1958): Astron Thermonuclear Reactor. – Proc 2nd UN Int. Conf. Peaceful Uses of Atomic Energy, Geneva, vol.32, pp.279–290.
- [28] Raptis A.A. (1986): Flow through a porous medium in the presence of a magnetic field. – Int. J. Energy Res., vol.10, pp.97–100.
- [29] Jha B.K. (1991): MHD free convection and mass-transform flow through a porous medium. – Astrophys. Space Sci., vol.175, pp.283–289.
- [30] Chamkha A.J. (1997): Transient MHD free convection from a porous medium supported by a surface. – Fluid/Particle Separation Journal, vol.10, pp.101–107.
- [31] Kim Y.J. (2000): Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. – Int. J. Eng. Sci., vol.38, pp.833–845.
- [32] Ibrahim F.S., Hassanien I.A. and Bakr A.A. (2004): Unsteady magnetohydrodynamic micro-polar fluid flow and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass diffusion with a constant heat source. – Canad. J. Phys., vol.82, pp.775–790.
- [33] Chamkha A.J. (2004): Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. – Int. J. Eng. Sci., vol.42, pp.217–230.
- [34] Seth G.S., Ansari Md.S. and Nandkeolyar R. (2011): MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature. – Heat Mass Transf., vol.47, pp.551–561.
- [35] Mahmoud M.A.A. (2009): Thermal radiation effect on unsteady MHD free convection flow past a vertical plate with temperature dependent viscosity. – Canad. J. Chem. Eng., vol.87, pp.47–52.
- [36] Ogulu A. and Makinde O.D. (2008): Unsteady hydromagnetic free convection flow of a dissipative and radiating fluid past a vertical plate with constant heat flux. – Chem. Eng. Comm., vol.196, pp.454–462.
- [37] Chamkha A.J., Mohamed R.A. and Ahmed S.E. (2011): Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. – Meccanica, vol.46, pp.399–411.
- [38] Mohamed R.A., Osman A.N.A. and Abo-Dahab S.M. (2013): Unsteady MHD double-diffusive convection boundary-layer flow past a radiate hot vertical surface in porous media in the presence of chemical reaction and heat sink. – Meccanica, vol.48, pp.931–942.
- [39] Singh G. and Makinde O.D. (2012): Computational dynamics of MHD free convection flow along an inclined plate with Newtonian heating in the presence of volumetric heat generation. – Chem. Eng. Comm., vol.199, pp.1144–1154.
- [40] Abid H., Ismail Z., Khan I., Hussein A.G. and Shafie S. (2014): Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. – Eur. Phys. J. Plus, vol.129, p.46.
- [41] Sherman A. and Sutton G.W. (2006): Engineering Magnetohydrodynamics. – New York: Dover Pub Inc.
- [42] Fife J. (1998): Hybrid-PIC Modeling and electrostatic probe survey of Hall thrusters. – PhD Thesis, Department of Aeronautics and Astronautics, MIT, USA.
- [43] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J. and Hayes J. (2005): Mechanisms of plasma actuators for hypersonic flow control. – Prog. Aerosp. Sci., vol.41, pp 642–668.
- [44] Kholshchevnikova E.K. (1966): Influence of the Hall effect on the characteristics of a MHD generator with two pairs of electrodes. – J. Appl. Mech. Tech. Phys., vol.7, No.4, pp.48–54.
- [45] Michaeli K., Tikhonov K. S. and Finkel’stein A.M. (2012): Hall effect in superconducting films. – Physical Review, B 86 014515.
- [46] Davidson P.A. (1999): Magnetohydrodynamics in materials processing.– Annual Review Fluid Mech. vol.31, pp.273–300.
- [47] Hardianto T., Sakamoto N. and Harada N. (2008): Computational study of diagonal channel magnetohydrodynamic power generation. – Int. J. Energy Technol. Policy, vol.6, pp.96–111.
- [48] Mathon Ph., Nouri A., Alemany A., Chopart J.P., Sobolik V. and Baaziz D. (2009): Electro-chemical processes controlled by high magnetic fields: application to MHD sea water propulsion.– Magnetohydrodynamics, vol.45, pp.281–288.
- [49] Van Wie D.M. (2005): Future Technologies – Application of Plasma Devices for Vehicle Systems. – The Johns Hopkins University, Applied Physics Laboratory – Laurel, Maryland, USA – NATO Document.
- [50] Morley N.B., Malang S. and Kirillov I. (2005): Thermofluid Magnetohydrodynamic issues for liquid breeders.– Fusion Sci. Tech., vol.47, pp.488–501.
- [51] Pop I. and Watanabe T. (1994): Hall effect on magnetohydrodynamic free convection about a semi-infinite vertical flat plate. – Int. J. Eng. Sci., vol.32, pp.1903–1911.
- [52] Abo-Eldahab E.M. and Elbarbary E.M.E. (2001): Hall current effect on magnetohydrodynamic free-convection flow past a semi-infinite vertical plate with mass transfer. – Int. J. Eng. Sci. vol.39, pp.1641–1652.
- [53] Takhar H.S., Roy S. and Nath G. (2003): Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents. – Heat Mass Transf., vol.39, pp.825–834.
- [54] Saha L.K., Siddiqa S. and Hossain M.A. (2011): Effect of Hall current on MHD natural convection flow from vertical permeable flat plate with uniform surface heat flux. – Appl. Math. Mech., vol.32, pp.1127–1146.
- [55] Seth G.S., Mahato G.K. and Sarkar S. (2013): Effects of Hall current and rotation on MHD natural convection flow past an impulsively moving vertical plate with ramped temperature in the presence of thermal diffusion with heat absorption. – Int. J. Energy Tech., vol.5, No.16, pp.1–12.
- [56] Cramer K.R. and Pai S.I. (1973): Magnetofluiddynamics for Engineers and Applied Physicists. – New York: McGraw Hill Book Company.
- [57] Abid H., Khan I. and Shafie S. (2013): An exact analysis of heat and mass transfer past a vertical plate with Newtonian heating. – J Appl. Math., vol.2013, Article ID 434571, pp.1-9.
- [58] de Hoog F.R., Knight J.H. and Stokes A.N. (1982): An improved method for numerical inversion of Laplace transforms. – S.I.A.M. J. Sci. and Stat. Comput., vol.3, pp.357-366.
- [59] Hollenbeck K.J. (1998): Invlap. M: A matlab function for numerical inversion of Laplace transforms by the de Hoog algorithm. – http://www.isva.dtu.dk/staff/karl/invlap.htm.
- [60] Carnahan B., Luther H.A. and Wilkes J.O. (1969): Applied Numerical Methods. John Wiley and Sons, New York
- [61] Antia H.M. (1991): Numerical Methods for Scientists and Engineers. – Tata McGraw-Hill Publishing Co Ltd, New Delhi, India.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32f6d8c6-cf3d-455e-81ad-f1c22c6fcef5