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DEVELOPMENT OF A FUZZY INFERENCE SYSTEM FOR AVOIDING 
COLLISION OF BUCKET WHEEL EXCAVATOR EQUIPPED WITH 
ELECTROMAGNETIC (EM) SENSORS WITH HARD ROCK INCLUSIONS

OPRACOWANIE SYSTEMU WNIOSKOWANIA ROZMYTEGO DLA UNIKNIĘCIA 
KOLIZJI KOPARKI WIELONACZYNIOWEJ KOŁOWEJ WYPOSAŻONEJ W CZUJNIKI 
ELEKTROMAGNETYCZNE (EM) Z WTRĄCENIAMI NIEURABIALNYMI

This study aims to the development of a Fuzzy Inference System (FIS) that will guide the operator of a Bucket Wheel Exca-
vator (BWE) equipped with geophysical sensors to avoid collision of the excavating buckets with the hard rock formations. The 
developed FIS uses the probability of occurrence of a hard rock formation (estimated from the measurements of the geophysical 
sensor) and the operational data of the BWE to estimate the risk for collision and the diggability of the excavated material. The 
structural and operational characteristics of the used BWEs as well as the applied mining practices were used to modify the struc-
ture and the inference rules of the FIS and to maximize the exploitation of the existing factual and experiential knowledge.
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W artykule zaprezentowano wyniki badań mających na celu opracowanie Systemu Wnioskowania Rozmytego (FIS), który 
będzie wspomagał operatora koparki wyposażonej w czujniki geofizyczne, aby uniknąć kolizji koła czerpakowego z twardymi 
formacjami skalnymi. Opracowany system FIS wykorzystuje prawdopodobieństwo wystąpienia nieurabialnej skały (oszaco-
wanego na podstawie pomiarów czujnika geofizycznego) oraz dane operacyjne koparki w celu oszacowania ryzyka kolizji 
i urabialności wybieranych utworów. Cechy konstrukcyjne i użytkowe używanych koparek, a także stosowane praktyki górnicze 
zostały wykorzystane do modyfikacji struktury i zasad wnioskowania FIS oraz maksymalizacji wykorzystania istniejącej wiedzy 
faktycznej i empirycznej.

Słowa kluczowe: system Wnioskowania Rozmytego, koparka wielonaczyniowa kołowa, wtrącenia nieurabialne, unikanie kolizji

INTRODUCTION

Recent advances in FIS have provided a new approach 
in  solving many problems related to mineral industry, a tradi-
tional economic activity which is heavily based on the expe-
riential knowledge. The success of Fuzzy Inference Systems 
(FIS) is mainly due to their similarity to human perception and 
reasoning, and their intuitive handling and simplicity, which are 
important factors for the acceptance and usability of the mining 
systems. FIS have the ability to handle imprecise or incomplete 
information and to incorporate them into decision–making 
processes, based on the knowledge of an expert. The literature 
review of the recently published related articles indicates that 
there are an increasing number of FIS applications in almost all 
fields of mineral industry (Galetakis and Vasileiou, 2013).

In this study we suggest a Fuzzy Inference System (FIS) that 

aids the operator of a Bucket Wheel Excavator (BWE) equipped 
with geophysical sensors to avoid collisions of the excavating 
buckets with the hard rock inclusions and other problematic in 
digging materials, which can cause severe damages to BWE. 
After extensive comparison, ranking and evaluation via field
testing of several geophysical methods we have identified that,
in the typical geologic environment of lignite mines employing 
BWEs, the Electromagnetic Method (EM) measuring the elec-
trical resistivity of the subsurface materials are the most promi-
sing in detecting local features such boulders and hard layers 
(Overmeyer et al., 2007; Galetakis et al., 2016; Vafidis et  al., 
2016). Thus a continuously working geophysical EM sensor 
mounted on the BWE scans the slope few cuts ahead of the face 
and measures the electrical resistivity of geological formations. 
The received data form EM sensor, after pre-processing and 
corrections, are sent an automated algorithm to  estimate the 
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probability of occurrence of a hard rock formation at the position 
of measurement, and sends this information to  expert system 
module. The developed expert system (FIS) uses the probability 
of occurrence of a hard rock formation and the operational data 
of the BWE to estimate the risk for collision and the diggability 
of the excavated material. 

More specifically a Mamdani type FIS was created, within
Matlab programming environment. The development of the FIS 
included the selection of its inputs (the probability of occurrence 
of a hard rock formation at a specific position S, the distance
of bucket wheel to S, the slewing speed of bucket wheel and 
the apparent resistivity values of the excavated material), the 
fuzzyfication-membership functions, the inference rules and
the defuzzyfication method. Two outputs were selected for
the FIS, the risk for collision of the bucket wheel with a hard 
rock formation and the diggability of the excavated formation. 
The training of the developed FIS was based on collected data 
regarding structural and operational characteristics of the used 
BWEs and the applied mining practices. This information was 
used to modify the structure and the inference rules of the FIS 
and to maximize the exploitation of the existing factual and 
experiential knowledge.

FUZZY INFERENCE SYSTEMS 

FIS have emerged from the field of „Artificial Intelligence”,
in which expert systems, artificial neural networks, genetic
algorithms, and agent-based software have also dominated. 
Fuzzy inference systems are computing frameworks, based 
on the concepts of fuzzy set theory. FIS can be considered 
as a  process for mapping a given input data set to an output 
set, using fuzzy logic. The mineral industry sector has been 
particularly receptive to these methods, since many of the mi-
ning operations and processes are understood and controlled 
in  empirical ways. The goal of the design of the fuzzy inference 
system is  to capture the knowledge of a human expert relative 
to some specific domain and code this in a computer in such
a way that the knowledge of the expert is available to a less 
experienced user (Tripathi 2011, Dennis 1996).

FIS have been applied with success in mining (Kesimal 
& Bascetin, 2002; Taboada et al., 2006, Galetakis and Vasi-
liou 2010), mineral processing (Chuk et al., 2005) mineral 
exploration (Luoa & Dimitrakopoulos, 2003) and other fields
of  mineral industry (Meech, 2006). Their success is mainly due 
to their similarity to human perception and reasoning, and their 
intuitive handling and simplicity, which are important factors 
for the acceptance and usability of the mining systems.

FIS uses fuzzy logic, instead of Boolean logic, to reason 
about data in the inference mechanism. Fuzzy logic, initiated 
in  1965, by Zadeh, is a multi-valued logic that allows interme-
diate values to be defined between conventional evaluations,
like true/false, yes/no, high/low, etc. (Zadeh, 1997). Notions like 
‘‘rather thick” or ‘‘very thin” can be formulated mathematically 
and processed by computers, in order to apply a more human-
-like way of thinking. Unlike the classical Boolean set allowing 
only 0 or 1 value, the fuzzy set is a set with a smooth boundary 
allowing partial membership. The degree of membership in the 
set is expressed by a number between 0 and 1, with 0 indicating 
entirely not in the set, 1 indicating completely in the set and 
a  number in between meaning partially in the set.

The basic structure of a general FIS, shown in Figu-

re 1,  consists of three subsystems: a fuzzifier, a rule base and
a  defuzzifier. While the fuzzifier and the defuzzifier have the
role of converting external information in fuzzy quantities 
and vice versa, the core of a FIS is its knowledge base, which 
is  expressed in terms of fuzzy rules and allows for approximate 
reasoning (Czogala & Leski, 2000). Fuzzification refers to the
process of taking a crisp input value and transforming it into 
the degree required by the terms. The fuzzification subsystem
measures the values of input variables, performs a scale map-
ping that transfers the range of values of input variables into 
corresponding universes of discourses and finally performs the
function of fuzzification that converts input data into suitable
linguistic values, which may be viewed as labels of fuzzy sets. 
Such a  function is called the membership function and it  is  de-
termined by the experts. Typically, a FIS can be classified
according to three main types of models that are distinguished 
in the formalization of the fuzzy rules (Castellano et al., 2002). 
The knowledge base is consisting of a set of fuzzy „if-then” 
rules which capture the relation between input and output 
linguistic variables. The developed FIS is the Mamdani type, 
which incorporates the following fuzzy rule schema:

IF x is A then y is B 

where: A and B are fuzzy sets defined on the input and
output domains, respectively. Mamdani FIS type was proposed 
as the first attempt to solve control problems, by a set of lin-
guistic rules obtained from experienced human operators. The 
main feature of such type of FIS is that both the antecedents 

and the consequents of the rules are expressed as linguistic 
constraints. As a consequence, a Mamdani FIS can provide 
a  highly intuitive knowledge base that is easy to understand 
and maintain, though its rule formalization requires a time con-
suming defuzzification procedure. FIS have been successfully
applied in several engineering and scientific fields as automatic
control, data classification, decision analysis, expert systems
and many others.

Fig. 1. Scheme of a Fuzzy Inference System (FIS)
Rys. 1. Schemat Systemu Wnioskowania Rozmytego(FIS)

DEVELOPMENT  OF A FUZZY INFERENCE SYSTEM

For the development of the FIS, the Fuzzy Logic Toolbox 
of the Mathworks was implemented (Mathworks, 1999). The 
steps for the development of the FIS were:
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 - Definition and fuzzification of the input/output variables.

 -  Creation of the inference rules (application of the fuzzy 
operator (AND, OR) in the antecedent and implication from 
the antecedent to the consequent).

 -  Aggregation of the consequents across the rules.

 - Defuzzification.

During the first stage the initial structure and the parameters
of the developed FIS were chosen. The final structure and the
FIS and the optimal values of parameters were determined during 
training. During the training process typical selective mining 
cases representing different operational conditions were given 
to  FIS as input data and the obtained results were compared 
to  that evaluated by an expert (mining engineers). Furthermore 
the rules inference mechanism and the response surface plot were 
examined. Based on the results of this comparison FIS parameters 
were changed until satisfactory result was achieved (Fig.2).

Definition of input/output variables
Based on the description of mining operations and the 

experts’ opinion, the inputs selected for the developed FIS 

Fig. 2. Strategy for developing a FIS for the determination of the collision risk
Rys. 2. Strategia opracowania FIS w celu określenia ryzyka kolizji

Fig. 3. FIS development in Matlab programming environment (Fuzzy Logic 
Toolbox)

Rys. 3. Rozbudowa FIS w środowisku programowania Matlab (Fuzzy Logic 
Toolbox)

were considered the probability of occurrence of a hard rock 
formation at a specific positon S, the distance of bucket wheel
to S,  the slewing speed of bucket wheel and the apparent 
resistivity values of the excavated material. Two outputs were 
selected for the FIS, the risk for collision of the bucket wheel 
with a hard rock formation and the diggability of the excavated 
formation. The structure of the FIS, consisting of four inputs, 
two outputs and 12 rules, is shown in Figure 3.

Input variables
For the probability of occurrence of a hard rock formation 

at  a specific positon S, three linguistic fuzzy variables, named
low, medium and high were used. For the distance of bucket 
wheel to S, three linguistic fuzzy variables, named small, medium 
and large were used. For the slewing speed of bucket wheel, two 
linguistic fuzzy variables, named low, and high were used. For 
the apparent resistivity values of the excavated material, three 
linguistic fuzzy variables, named low, medium and high were 
used.

Output variables
For the risk for collision of the bucket wheel with a hard 

rock formation, three linguistic fuzzy variables, named low, 
average and high were used. For the diggability of the excavated 

formation, three linguistic fuzzy variables, named easy, average 
and difficult were used.

Fuzzification of variables
The fuzzification of the FIS input/output variables converts

them to linguistic variables, which are fuzzy sets that are used 
to  add semantic sense to the analysis. The shape of the fuzzy 
variables is given by the fuzzy membership functions. A degree 
of  membership to a linguistic variable is assigned to  each 
value of the input variable. In this step, the degree μl,  to which 
each input variable belongs to the appropriate fuzzy set via mem-
bership functions, is determined. The input is always a  crisp nu-
merical value and the output is a fuzzy degree μ  of  membership 
in the qualifying linguistic set (always in the interval between 
0 and 1). The membership functions, used for the fuzzy values 
of  the fuzzy variables, are selected based on  expert’s experience. 
The parameters of membership functions were optimized during 
the training of the FIS. The parameters of the membership func-
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tions, which determined during the training process, are shown 
in Figure 4.

Inference rules and aggregation process
The rules of the FIS are obtained from information gathered 

by mining engineers and operators’ experience and were optimized 
during the training of the FIS. Finally, the developed knowledge 
base of the FIS consists of 12 rules. The fuzzy operator AND was 
applied to all fuzzy antecedents. The structure of a typical rule 
consists of the antecedent, the inference and the weigh. The weigh 
indicates the importance of a particular rule compared to the others. 
In the developed FIS, all rules have the same weigh. Typical set of 
rules of the developed FIS is  shown in Figure 5. The results of  all 
rules are combined with the aggregation process into a single fuzzy 
set for the output variable. From the available aggregation methods 
(maximum, probabilistic or and summation) the summation method 
was used.

Defuzzification
The input for the defuzzification process is the aggregate out-

put fuzzy set and the output is a crisp number. The most popular 
defuzzification method is the centroid, which calculates the centre
of the area under the curve. Other available methods are: bisector, 
middle of maximum (the average of the maximum value of the 
output set), largest of maximum, and smallest of  maximum. In the 
developed FIS the centroid method was used. The inference mecha-

Fig. 4. Membership functions of input/output variables
Rys. 4. Funkcje przynależności zmiennych wejściowych / wyjściowych

Fig. 5. Typical set of rules of the developed FIS
Rys. 5. Typowy zestaw reguł opracowanego FIS

nism of  the developed FIS, which consists of four inputs, 12 rules 
and two outputs, is shown in  Figure 6. Information flows from left
to right, to a single output for each rule. Outputs from all rules are 
aggregated to form outputs fuzzy set. The response surface for Risk 
of Collision as function of the Probability (of hard rock occurrence) 
and the Distance (BW to hard rock) is shown in Figure 7.

FIS versions for Simple and Advanced Mode operation
Two different versions of the Fuzzy Inference System (FIS) 

were developed. The first version, presented above, was named
AMFIS and it is used during the advanced mode operation 
of  the real-time automated algorithm for data processing and 
evaluation. The second version, named SMFIS, is used during 
the simple mode operation of the real-time automated algori-
thm for data processing and evaluation. The SMFIS has less 
inputs (the probability and the distance) and rules compared 
to AMFIS. 

FIS INTEGRATION AND TESTING IN SOUTH FIELD 
MINE  

The integration of the developed FIS into the overall system 
for real-time monitoring of the excavation process of the BWE 
(Fig. 8) included:

- connection of the FIS to the automated algorithm for the 
estimation of the probability of occurrence of a hard rock for-
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Fig. 6. Fuzzy inference mechanism and defuzzification method
Rys. 6. Mechanizm wnioskowania rozmytego i metoda defuzji

Fig. 7. FIS response surface for Risk of Collision as function of the 
Probability (of hard rock occurrence) and the Distance (BW to hard 
rock)

Rys. 7. Powierzchnia odpowiedzi FIS dla ryzyka kolizji w funkcji 
prawdopodobieństwa (występowania nieurabialnego wtrącenia 
skalnego) i odległości (koła wielonaczyniowego do wtrącenia 
skalnego)

mation based on the measurements of the electrical resistivity 
of the excavated material obtained by the EM sensor

- development of a graphical user-interface (visualization 
unit) providing all necessary information, including this obta-
ined by the fuzzy expert system, in a comprehensive way, to the 
operator of the BWE was also developed. As shown in Figure 
9 the developed visualization unit includes four panels. 

The first panel (top left) displays the excavation process via
live streaming obtained by a camera connected to the system. 

Fig. 8. Overall system for real-time monitoring of the excavation process of the BWE
Rys. 8. Ogólny system monitorowania w czasie rzeczywistym procesu urabiania wielonaczyniową koparką kołową

The second panel (bottom left) displays the outputs of the fuzzy 
expert system (risk for collision of the BW with a  hard rock 
formation and diggability of excavated material) as well as the 
probability of occurrence of a hard rock formation. These values 
are displayed in colored scale in order to be easily visible and 
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Fig. 9. Visualization unit providing all necessary information to the operator of the BWE during real-time mine face inspection tests 
in  South  Field mine at Ptolemais area (Greece)

Rys 9. Okno wizualizacji dostarczające operatorowi wszystkie niezbędne informacje podczas urabiania zabierki w czasie rzeczywistym 
w  kopalni South Field na obszarze Ptolemais (Grecja).

understood by the operator of the BWE. When risk of collision 
exceeds a certain level an audio alarm is also activated and short 
messages in form of warnings of  advices for the operator of  the 
BWE are displayed. The third panel (top right) includes the 
buttons controlling the measuring units during the excavation 
process and for creating plots of the resistivity measurements. 
The fourth panel (bottom right) displays the current resistivity 
measurements. Depending on the mode of real-time operation 
(simple or advanced) this panel can also provide information re-
garding the position BW and the slewing speed of the boom.

The above described system was tested in South Field mine 
(Ptolemais, Greece) operated by the Public Power Corporation 
(PPC). The system was mounted in a BWE operating on the 
first bench of the mine, where hard rock inclusions (mainly
conglomerates) in forms of lenses occur.  Results indicated that 
the system was able detect the presence of hard rock inclusions 
in the excavating area and to generate early warnings alarms for 
the operator of the BWE. The use of the fuzzy expert system 
results in the gradual detection of collision and this is very 
convenient for BWE operator. 

CONCLUSIONS

The use of fuzzy logic have allowed to capture and incor-
porate the existing experiential knowledge about excavated 
material properties and the mining with BWE in a very efficient
way in the developed fuzzy expert system used to estimate 

the risk of collision of bucket wheel with hard rock forma-
tions. The use of fuzzy logic results in the gradual detection 
of collision and this was very convenient for BWE operators. 
Furthermore the developed fuzzy expert system can be simply 
adjusted through membership functions to include new factual 
knowledge while the fuzzy set of rules can be easily extended 
to incorporate additional experiential knowledge. This will 
allows the application of the developed system in different 
mining environments.  
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