
ADVANCES IN COMPUTER SCIENCE RESEARCH

ASSESSMENT OF LDAP SERVICES IN HIGH
AVAILABILITY ENVIRONMENT

Marcin Marchel1,2, Cezary Boldak1

1 Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

2 Transition Technologies, Warsaw, Poland

Abstract: In this work we assess functioning of an LDAP service in the High Avail-
ability Environment. A system configuration with two alternative existing open source
LDAP implementations (OpenLDAP and Apache Directory Server) was examined. Pace-
maker/Corosync tool were employed here to manage two distributed resources: virtual main
IP address and two cloned LDAP services. The test system was deployed on the LDAP pro-
duction servers at Faculty of Computer Science, Bialystok University of Technology. Then
several tests were run to measure the time of various operations (initialization, read/write,
switchover, failover) as well as to verify the continuity of working and data consistency in
presence of diverse faults, including power supply off. Few low level problems (due to used
tools) were encountered and solved.

Keywords: LDAP, high availability, data consistency, Pacemaker/Corosync, OpenLDAP,
Apache Directory Server

1. Background

LDAP (Lightweight Directory Access Protocol) [3] is an Internet Protocol that pro-
vides access to information that is organized in the hierarchical form (tree-structured).
It is also commonly used as an external service for user authentication and authoriza-
tion in numerous information systems. OpenLDAP [9] and Apache Directory Server
[10] are well known open source LDAP implementations. Both of them provide
built-in replication functionalities in two modalities: refresh-only – where consumers
(replicas) periodically synchronize their states with the provider (replicas initiate the
synchronization) and refresh-and-persist – where the consumers (after initial regis-
tration with the provider) are synchronized immediately after the provider is modified
(the provider initiates the synchronization).

Advances in Computer Science Research, vol. 12, pp. 21-35, 2015.

21



Marcin Marchel, Cezary Boldak

High availability (HA) is a term that refers to the information systems with pro-
tections against possible unwanted downtime to your system caused by hardware
or software malfunctions (faults) [13,14]. The desired availability level (period of
correct functioning without failure – statistically estimated or empirically calculated
in a longer term) depends on a domain of the system usage, but for the most criti-
cal domains on can strive for single seconds of downtime per year (99.99999 % for
ultra-avaliability) [5]. “No-dowtime” is probably only the theoretical level.

The key technique for handling such malfunctions is redundancy [4]. According
to this assumptions, the defective part of the infrastructure (e.g. server, service) will
be automatically replaced with the other spare one available in the pool, which un-
til the fault occurrence might not serve any significant features. When the replaced
resource is statefull, all redundant copies must be kept consistent (data replication).
But the redundancy is only a pre-requisite to the high availability – further system or-
ganization to recognize and deal with faults is necessary to assure better availability
rate [5].

High-availability mechanisms refer to functionalities that help to increase its
reliability. High-availability mechanisms are:

– Failover is the mechanism that performs his job at the time when a lack of ac-
cess to the resource is detected. This mechanism performs a switch to another
available resource that should be mirrored copy of the resource that has failed.

– Switchover mechanism is aimed at getting the same as its automatic failover
equivalent. The difference between these mechanisms lies in the fact that the
switchover requires the intervention of a person (such as a system administrator)
to perform the switch node or restart the software.

– Switchback is a mechanism that involves the restoration of network traffic to a
node with a higher priority than that which is currently supporting the resource.
This mechanism assumes that higher priority node was unavailable for some pe-
riod of time for any reason.

– Heartbeat is the mechanism that for specified period of time (interval) sends
information to defined system objects of its availability. Depending on the infor-
mation returned by this mechanism defined actions will be performed.

There exist technologies/tools to facilitate implementation of the high availabil-
ity paradigm. One of them is Pacemaker/Corosync [11,12], offering low level so-
lutions (heartbeat, distributed resource definition and management) to the the high
available system developer .

22



Assessment of LDAP services in high availability environment

2. Related works

The literature study did not reveal many works on assuring the high availability in
hierarchical databases (LDAP). [1] proposes a solution (BFT-LDAP) to overcome
Byzantine Faults to keep all the LDAP replicas consistent, but does not take into ac-
count the necessity of the high availability of the service, for instance when a physical
machine is gone. [2] presents a very detailed study on the OpenLDAP performance
(time measures for several LDAP operations) in different hardware and software con-
figurations in order to achieve the optimum response time and throughput. But only
one OpenLDAP instance was examined, not replicated nor distributed, and without
component faults, what is of the main concern in this work.

Much more sources treat high availability in standard relational databases. [6]
describes a highly available configuration of the MySQL database using Heartbeat,
rsync and internal MySQL replication functionality, but no verification of the pro-
posed solution was performed. [7] builds a “highly available” PostgreSQL configu-
ration in the cloud using the Threshold Based File Replication technique. The server
replication and automatic, load-balanced request routing seem to fulfill the HA re-
quirements, but more interests there is oriented toward the load-balancing concerns
(practical experiments) while the system resiliency in presence of faults is not stud-
ied at all. [8] also proposes a highly available transactional database system (using
Oracle and Tuxedo tools). This work focuses on redundant components (hardware),
database replication, parallel server/clustering and transactional replication. Several
test scenarios (even complex ones) were prepared and performed. They consisted of:
database failure, server process crash, network failure and verified the correct func-
tioning of the system in their presence. The response times for 10,000 messages were
measured (however not reported in details), but not times of other operations (e.g.
failover).

3. Test system configuration

Our test system is based on redundancy of the run LDAP servers, controlled by the
the Pacemaker/Corosync software suite, to provide the high availability of the LDAP
service and fault tolerance (verified experimentally in Section 4.) to several malfunc-
tions. The redundant LDAP servers are kept synchronized by the internal mechanisms
of the two analyzed LDAP implementations.

The system needs at least two machines (real or virtual), but can be further grown
up to a larger number, to take into account more failed nodes. In our experimental
configuration we used two nodes:

23



Marcin Marchel, Cezary Boldak

– ldap-one - Main node with IP1,
– ldap-two - Backup node with IP2.

The two IP addresses IP1 and IP2 are not exposed to clients – they are used only for
internal resource management. Instead, the third address IPglobal, bound to a DNS
name, is offered to external systems (by means of the bound DNA name) – see below.

The Pacemaker/Corosync environment (installed in the distributed manner on
all nodes) defined two managed resources.

1. Virtual IP Address (IPglobal): This resource was configured with higher priority
assigned to the ldap-one node. It means that in case of 2 nodes availability, the
IPglobal address will be assigned to ldap-one node (which is the real machine,
while ldap-two is the virtual one). This resource was working in Active/Passive
mode.

2. LDAP Resource: This resource (representing the run and redundant LDAP
servers) had to be cloned for every node. It means that it should be active all
the time on every node defined in the cluster (working in Active/Active mode).
There was some additional work done by us to create a new OCF (Open Cluster
Framework) [15] resource agent for Apache Directory Server, because it was not
provided out of the box. OCF resource agent for OpenLDAP is available as out
of the box solution for Pacemaker. Creating new resource agent for Pacemaker
made us possible to perform examinations for both ApacheDS and OpenLDAP
implementations.

Detecting a node failure (loss) and switching to the backup node are managed
with the Pacemaker/Corosync suite but recovering to the initial (fully operational)
configuration can be more complicated. Some faults (local LDAP process, system
restart) are to be dealt with the used tool (by restarting, what is sufficient in many
cases [5]), but others (system stop, power off, machine error) need a manual interven-
tion. In this case, after detecting the permanent loss of one node, the system should re-
port this abnormal state to the administrator. Such behavior can be enabled by adding
ocf:pacemaker:ClusterMon resource. This resource provides notifying about cluster
events, which can be received in a few different ways like email/SNMP (Simple Net-
work Management Protocol) notifications or by using external agent (shell script).

Two different LDAP implementations were examined independently: OpenL-
DAP and Apache Directory Server. Both of them were configured accordingly to
their technical documentation to the refresh-and-persist replication. This mode is
closer to assure the strong data consistency (all modifications of the main node are
immediately propagated to the backup ones), while the second mode (refresh-only)

24



Assessment of LDAP services in high availability environment

realizes the eventual data consistency (changes are propagated periodically, so with a
latency) [4].

Figure 1 presents functioning of the test system. External users (systems) use
the domain name resolved by the DNS to IPglobal. This address, as the managed dis-
tributed resource, is assigned to the only one node from the pool. It is worth noticing
that the entire system works in the Active/Pasive model and the redundant replicas do
not serve the client requests. It could be further changed to the Active/Active model,
implementing some load balancing technique [14] to increment the system through-
put. The connection between the LDAP resources means the replication mechanism.

Fig. 1. Architecture of the test system.

4. Experiments

The main goals of the prepared tests were to:

– verify the failover functioning under different malfunctions,
– measure the response time of basic LDAP operations, in normal conditions and

in presence of faults,
– verify the data consistency after the failover server switch.

All the tests were performed on the two selected LDAP implementations
(OpenLDAP 2.4 and Apache Directory Server 2.0.0-M20) independently, so the ad-

25



Marcin Marchel, Cezary Boldak

ditional goal was to compare these two technologies regarding all the three mentioned
above aspects.

The test environment was set up on the production servers at the Faculty of
Computer Science, Bialystok University of Technology, Poland. A cluster of two
nodes was built, one located on a real machine, second on a virtual one. A third
machine in the same network was used to run all the test scripts. Tests were performed
without using the LDAPS secure protocol. All experiments were run 10 times (except
stated differently) and min, max and mean statistics are presented.

Test plan

We planned and ran four types of tests.

1. Measuring times of read and write operations in normal circumstances. The
main goal was to have the reference for the following experiments (scaling). Ad-
ditionally the read and written information was located on different tree levels to
check if it influenced the response times.

2. Measuring times of initialization/restoration of the cluster functioning after
a single node loss and in case of the entire cluster restarting.

3. Verifying the failover functioning and measuring its times. Only one node
(active) failure was simulated. As this mechanism is driven by the heartbeat mes-
sages, experiments were conducted for several their intervals.

4. Verifying the data consistency in the event of active node failure. LDAP un-
availability was caused by different reasons: killing the LDAP service local pro-
cess, controlled node disconnection from the cluster, controlled machine shut-
down, pulling out the power plug.

4.1 Read/write times (no faults present)

Tests presented in this chapter are designed to check how fast it is possible to save
and read a specified data set from/to the LDAP server. This examination also assumes
that no node failure would not occur during performing it. An important aspect of this
examination is the depth of the tree where the information is stored: 10, 30 50, 100.

Read times

This examination assumed preforming 10,000 read operations. Every read operation
was done on a different entry from the set of 1,000 entries and on the specified tree
depth to minimize usage of the memory cache mechanism. The previously mentioned

26



Assessment of LDAP services in high availability environment

entries were located at four different depths of the tree structure (10, 30, 50, 100).
Every such the depth contained its own set of 1,000 entries. We used default cache
settings for both ApacheDS and OpenLDAP. The algorithm shown below presents
steps of our shell script to calculate time required to perform 10,000 read operations:

1. Start the time counter.
2. In the loop of 10,000 iterations:

(a) generate DN for the current loop iteration,
(b) execute read operation (ldapread) – repeat it until success if failed occasion-

ally.
3. Stop the time counter. Calculate time required for performed operations and dis-

play result.

Results in Table 1 present times for both LDAP implementations and take into
account different depths of the tree structure. Based on the examination it can be
concluded that OpenLDAP offers 7% higher read speed than ApacheDS. It is also
worth noticing that depth of information in a tree structure does not significantly
affect the speed of reading.

Table 1. Read times (in seconds) in function of the tree depth (no faults).

Depth of
a tree structure

10 30 50 100
ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP

Minimum 203.49 188.81 204.99 192.15 209.39 192.33 222.16 197.08
Maximum 211.21 195.14 211.07 202.46 219.42 197.20 230.37 206.87
Average 206.08 193.03 207.55 195.36 212.89 194.73 225.36 200.49

Write times

This examination assumed performing 10,000 write operations. As before, the writes
modified data at different depth of the tree structure. This script assumes existence
of the defined entry on the specified tree depth, which contains Description attribute.
Every write operation performs incrementation of that attribute’s value. The algo-
rithm given below presents steps of our shell script to calculate the time required to
perform 10,000 write operations:

1. Start the time counter.

27



Marcin Marchel, Cezary Boldak

2. In the loop of 10,000 iterations:
(a) generate DN for the write operation using the current loop iteration context,
(b) perform the write operation (ldapmodify) – repeat it until success if failed

occasionally.
3. Stop the time counter. Calculate time required for performed operations and dis-

play result.

Results in Table 2 present times for both LDAP implementations and take into
account different depths of the tree structure. Based on the examination it can be con-
cluded that OpenLDAP implementation is able to write information about 38 times
faster than ApacheDS. It can be partially acceptable (in the case of ApacheDS) in
scenarios where the data is much more frequently read then written. Here again, the
tree depth has only minor influence on the performance.

Table 2. Write times (in seconds) in function of the tree depth (no faults).

Depth of
a tree structure

10 30 50 100
ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP

Minimum 7410.86 193.12 7317.77 209.62 7423.12 205.68 7653.84 209.97
Maximum 7498.54 240.16 7351.10 241.95 7478.83 239.48 7714.01 237.50
Average 7455.31 213.42 7331.34 224.85 7450.69 224.08 7685.88 227.71

4.2 Times of initialization/restoration the cluster functionality

The examinations presented in this chapter were executed to verify how fast will
the developed system restore its full availability after occurrence of two different
fault types: loss of all the nodes and loss of the active node. The algorithm shown
below presents steps that were done for both test cases. The script implementing it is
executed on the external node.

1. In a loop wait until LDAP becomes inaccessible - it is performed by executing
ldapsearch command and checking the returned status. In meanwhile the manual
step is done – pacemaker/corosync services are restarted on the active node.

2. Start the time counter.
3. ldapsearch command is executed in a second loop finished once LDAP becomes

accessible again.
4. Stop the time counter and print a message with the calculated time period.

28



Assessment of LDAP services in high availability environment

After a failure of all the nodes

That examination concerned the system behavior after failure of all two available
nodes (forced cluster software issue). The algorithm presented above was executed
in the normal cluster configuration, where two nodes had active (by cloning) LDAP
resource. Data in Table 3 presents the examination results for two chosen LDAP im-
plementations. Based on them, it can be concluded that OpenLDAP becomes accesi-
ble 40% faster than ApacheDS. The latter showed a high variance, with observations
going from 22.11 to 52.49.

Table 3. Times (in seconds) needed to restore LDAP functionality (all nodes failed in the same time).

LDAP ADS OpenLDAP
Minimum 22.11 23.88
Maximum 52.49 25.38
Average 39.27 24.38

After a failure of the active node

That examination concerned the system behavior after failure of the only one avail-
able node that hosted the LDAP resource. The algorithm presented above was exe-
cuted in the abnormal cluster configuration, where only one node was working (e.g.
after a failover or switchover event). Data in Table 4 presents examination results for
two chosen LDAP implementations. Based on the examination it can be concluded
that OpenLDAP becomes accesible about 40% faster than ApacheDS.

Table 4. Times (in seconds) needed to restore LDAP functionality (active node failed).

LDAP ADS OpenLDAP
Minimum 40.39 23.69
Maximum 42.80 32.48
Average 41.03 25.51

29



Marcin Marchel, Cezary Boldak

4.3 Examination of the failover functioning

This examination verified one of the main issues of this work: if the automatic switch-
ing to the backup node (failover) functioned at all. It also involved setting various
time intervals for the heartbeat module to examine its influence of this mechanism
speed. This test assumed that LDAP process would be manually killed on the active
node. Measured time showed how fast LDAP resource became available again. Used
algorithm shown below presents steps that were done (the script implementing it was
executed on the external computer).

1. In a loop wait until LDAP becomes inaccessible, its performed by executing
ldapsearch command and checking returned status – in meanwhile the manual
step is done: LDAP process (or 2 processes in case of ApacheDS) is killed on the
active node .

2. Start the time counter.
3. ldapsearch command is executed in a second loop finished once LDAP becomes

accessible again, what is verified by use of ldapsearch command.
4. Stop the time counter an print a message with the calculated time period.

Data placed in Table 5 presents examination results for the chosen LDAP imple-
mentations. Based on the examination it can be concluded that:

– failover worked all the times,
– heartbeat period affected the failover time in nearly linear manner (Figure 2),
– LDAP implementation did not affect the failover time.

Table 5. Times (in seconds) needed to restore LDAP functionality in function of the heartbeat period.

Heartbeat
configuration

3 10 15 20
ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP

Minimum 0.59 0.18 2.31 0.25 1.28 0.29 2.03 4.94
Maximum 2.98 3.04 9.12 9.88 13.29 14.89 23.19 28.66
Average 1.49 1.93 5.19 5.58 6.86 7.29 9.47 15.77

4.4 Examination of the data consistency after a failure of the active node

After confirming the failover functioning, this examination aimed probably the most
important goal for the proposed solution: verification of the data consistency when

30



Assessment of LDAP services in high availability environment

Fig. 2. Failover times in function of the heartbeat period.

a fault (consisted of a failure of the active node) occurred during the data sending
process (refresh-and-persist replication model was used).

This test was performed in four variants differing in the malfunction nature:

– Controlled disconnecting of the main node from the cluster, which was per-
formed by restarting the Pacemaker/Corosync services on the active node.

– Killing the LDAP process, which was performed by executing a shell script that
was able to automatically find LDAP process in memory and kill that process
(two processes in case of ApacheDS) on the active node.

– Controlled server shutdown, which was perfomed using shutdown command
on the active node.

– Plugging off the power plug, which was performed by manually plugging off
the power plug on the active node.

We used the algorithm presented below and composed of the following steps.

1. Set a local counter (LC) variable value to 1.
2. Write LC (ldapmodify) to the LDAP tree - it becomes a remote counter (RC).
3. In a loop (in meanwile one of the faults described above is produced):

(a) read RC and calculate delta D = LC−RC (it shows how many data modi-
fications were not replicated due to the active node failure – if it occurred in
that loop iteration),

31



Marcin Marchel, Cezary Boldak

(b) if D 6= 0 then: display a message about the event and exit the shell script,
(c) increment LC,
(d) increment RC (by ldpapmodify).

The results in Table 6 presents examination results for two chosen LDAP imple-
mentations. There was no data loss/inconsistency detected – our system for the both
chosen LDAP implementations passed this test.

Table 6. Numbers of the data loss cases (data inconsistency).

Fault

Controlled disconnecting
node from cluster

Killing LDAP
process

Controlled server
shutdown

Pulling the
power plug

ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP ADS OpenLDAP
Minimum 0 0 0 0 0 0 0 0
Maximum 0 0 0 0 0 0 0 0
Average 0 0 0 0 0 0 0 0

4.5 Encountered problems

We believe that an important aspect of our work is also to inform about problems that
were encountered in the studies.

We noticed an unexpected replication mechanism behavior during performing
examinations for both selected LDAP implementations. This problem occurred in
case of disconnecting power supply for the server and then turning the server on
again. The problem was caused by the replication mechanism being broken – it
stopped working bidirectionally. The only way to fix this issue was to restart LDAP on
the node, which was previously working as the backup one. This problem occurred
when the refresh-and-persist replication mode was chosen. In case of the refresh-
only, this problem was not occurring. The workaround for it was to extend initially
created OCF resource script for ApacheDS to be able to detect such situation and
perform restarting cluster services on the node that caused the problem.

Another type of issue that was noticed during the testing was a problem with
commands like ldapsearch and ldapmodify. This issue was about hanging process in
case when destination LDAP server got offline during command execution. In such
the case an additional parameter related to the process timeout was not working as
it was expected. This issue was noticed only for the ApacheDS implementation. The
workaround for it was to use eternal shell script that was used to detect and kill
hanging ldapsearch or ldapmodify process.

32



Assessment of LDAP services in high availability environment

5. Conclusions

This work resulted in the experimental assessment of functioning of the cluster sys-
tem realizing the highly available LDAP service, in normal working and in presence
of different faults . These examinations, thanks to using two different LDAP im-
plementations, allowed us to make more general observations about behavior of the
LDAP services in High Availability Environment in similar configurations.

Performed operations aimed to experimentally demonstrate the most important
features of high availability on example of the developed system. They responded
to the question whether the selected LDAP implementations are able to maintain
consistency of data between server instances in the case of a node failure. In the
case of any of the examined implementations data loss has not occurred at the
time of the main node failure. In our opinion, in the case of large production
environments where read/write operations from/to LDAP resource can be counted
in thousands per second, the result may be different than the one obtained in our
studies. Particularly in the case of a decidedly slower write operation when using the
ApacheDS implementation.

On the basis of the studies we additionally described four characteristics, which
in our opinion defines perfect LDAP implementation oriented for high availability.

1. The quality of replication mechanism: this is an important feature which can
ensure that data consistency will be kept in case of cluster’s node loss.

2. The speed of writing information: this is an important feature for the replication
mechanism because it can directly cause to not replicate the information in the
case of node failure (provider), which updates the information to other nodes
(consumers).

3. The speed of reading information: this is an important feature for replication
mechanism when you need to query the LDAP instance for specific information.

4. The speed of the service startup: this is particularly important in the case of
configuration, when a node becomes available only at the time of the root node
loss. In such case, the time it takes to boot up the LDAP server is the time which
delays the start of the entire cluster environment.

On the basis of those studies, we observed that the OpenLDAP implementation
is more stable in the case when high availability is required. However, during our
experiments, negative influence of the lower ApacheDS performance have not been
encountered, but we do not exclude such a possibility in a longer time period usage.

This work can be continued in several directions. More LDAP implementations
can be examined to prove the generality of the system. The system availability can

33



Marcin Marchel, Cezary Boldak

be even increased by including (and further experimental verification) more backup
nodes. The system performance can be boosted by routing client requests to all the
nodes, not only the main one, with the load balancing techniques [14]. It would be
also interesting to observe and measure the system behavior and availability in longer
term (months or years) to empirically classify our solution to the concrete availability
class [5].

Acknowledgment

This work was supported by the Bialystok University of Technology with the grant
S/WI/2/2013.

References

[1] Ali Shoker, Jean-Paul Bahsoun: Towards Byzantine Resilient Directories, IEEE
11th International Symposium on Network Computing and Applications, 2012.

[2] Xin Wang, Member, Henning Schulzrinne, Fellow, Dilip Kandlur, and Dinesh
Verma: Measurement and Analysis of LDAP Performance, IEEE/ACM Trans-
actions On Networking, Vol. 16, No. 1, pp. 232–243, 2008.

[3] Franco Milicchio, Wolfgang Alexander Gehrke: Distributed Services with Ope-
nAFS. Springer Science & Business Media, 2007.

[4] Andrew S. Tanenbaum, Maarten Van Steen: Distributed Systems. Principles
and Paradigms (2nd Edition). Prentice-Hall, 2006.

[5] J. Gray, D.P. Siewiorek: High-availability computer systems. Computer, Vol.
24, No. 9, pp. 39–48, 1991.

[6] V. Chaurasiya, P. Dhyani, S. Munot: Linux Highly Available (HA) Fault-
Tolerant Servers. Information Technology, (ICIT 2007). 10th International Con-
ference on, pp. 223–226, 2007.

[7] S. Pippal, S. Singh, R.K. Sachan, D.S. Kushwaha: High availability of databases
for cloud. Computing for Sustainable Global Development (INDIACom), 2015
2nd International Conference on pp. 1716–1722, 2015.

[8] S. Budrean, Y. Li, B. C. Desai: High Availability Solutions for Transactional
Database Systems. Proceedings of the Seventh International Database Engi-
neering and Applications Symposium (IDEAS’03) 2003.

[9] OpenLDAP Software 2.4 Administrator’s Guide, Site: http://www.
openldap.org/doc/admin24/OpenLDAP-Admin-Guide.pdf, Access time:
19 October 2015

[10] ApacheDS 2.0 Advanced User Guide, Site: https://directory.apache.
org/apacheds/advanced-user-guide.html, Access time: 19 October 2015

34



Assessment of LDAP services in high availability environment

[11] Andrew Beekhof: Pacemaker 1.1, Configuration Explained, An A-Z guide to
Pacemaker’s Configuration Options, Site: http://clusterlabs.org/doc/
en-US/Pacemaker/1.1-pcs/pdf/Pacemaker_Explained/Pacemaker-1.
1-Pacemaker_Explained-en-US.pdf, Access time: 19 October 2015

[12] Andrew Beekhof: Pacemaker 1.1, Clusters from Scratch, Step-by-Step In-
structions for BuildingYour First High-Availability Cluster, Site: http:
//clusterlabs.org/doc/en-US/Pacemaker/1.1-pcs/pdf/Clusters_
from_Scratch/Pacemaker-1.1-Clusters_from_Scratch-en-US.pdf,
Access time: 19 October 2015

[13] Theo Schlossnagle: Scalable Internet Architectures Sams Publishing, 2006.
[14] P. Membrey, E. Plugge, D. Hows: Practical Load Balancing, Ride the Perfor-

mance Tiger Apress, 2012.
[15] Florian Haas: The OCF Resource Agent Developer’s Guide, Site: http://www.

linux-ha.org/doc/dev-guides/ra-dev-guide.html, Access time: 20 Oc-
tober 2015

OCENA USŁUG KATOLOGOWYCH LDAP
W ŚRODOWISKU WYSOKIEJ DOSTĘPNOŚCI

Streszczenie W niniejszej pracy oceniono działanie usług katalogowych LDAP w środo-
wisku wysokiej dostępności. Wzięto pod uwagę dwie implementacje LDAP o otwartym
kodzie: OpenLDAP i Apache Directory Server. W celu zarz adzania dwoma rozproszonymi
zasobami (wirtualny adres IP i dwie sklonowane usługi LDAP) użyto narzędzia Pacema-
ker/Corosync. Testowa konfiguracja został wdrożona na serwerach produkcyjnych LDAP na
Wydziale Informatyki Politechniki Białostockiej. W dalszej kolejności przeprowadzono te-
sty w celu pomiaru czasów różnych operacji (inicjalizacji, odczytu/zapisu, zaplanowanego
i awaryjnego przeł aczenia serwerów) jak również w celu zweryfikowania ci agłości pracy i
spójności danych w przypadku różnego rodzaju awarii, w tym zaniku zasilania. Konieczne
było rozwi azanie kilku technicznych problemów zwi azanych z użytymi narzędziami.

Słowa kluczowe: usługi katalogowe LDAP, wysoka dostępność, spójność danych, Pacema-
ker/Corosync, OpenLDAP, Apache Directory Server

Artykuł zrealizowano w ramach pracy badawczej nr S/WI/2/2013.

35


