PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on target positioning and signal processing based on the four-quadrant detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a target location system, the spot size and spot position of the laser light, which are received by a four-quadrant detector, are closely related to the accuracy of the target location. To acquire a pA-level current, according to the characteristics of the signals generated by the four-quadrant detector and the related signal processing circuits, this paper designs signal processing circuits with amplification multiples of 140 dB and 160 dB. Meanwhile, a T‑shaped compensation network is added to the circuit to solve the problem of bandwidth and gain not being increased simultaneously. Theoretical calculations and numerical simulations are carried out to verify this circuit gain, phase margin, and other parameters. Simulation results show that the bandwidth of the signal processing circuit with an amplification of 140 dB is 199.256 kHz, the bandwidth of the signal processing circuit with an amplification of 160 dB is 100 kHz, and the test bandwidth is 96 kHz in 140 dB, which provides a strong support for the calculation of the spot position of the four-quadrant detector.
Rocznik
Strony
art. no. e154200
Opis fizyczny
Bibliogr. 27 poz., rys., tab., fot.
Twórcy
autor
  • Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR, China
autor
  • Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR, China
  • Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR, China
autor
  • Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR, China
autor
  • Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR, China
  • Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR, China
  • Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR, China
Bibliografia
  • [1] Xu, G., Zha, B., Yuan, H., Zheng, Z. & Zhang, H. Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm. Def. Technol. 37, 1-13 (2024). https://doi.org/10.1016/j.dt.2023.06.011.
  • [2] Li, Q., Xu, S., Yu, J., Yan, L. & Huang, Y. An improved method for the position detection of a quadrant detector for free space optical communication. Sensors 19, 75 (2019). https://doi.org/10.3390/s19010175.
  • [3] Meng, Y. et al. Research effect of four-quadrant detector detection spot in atmospheric turbulence. Appl. Mech. Mater. 552, 123-127(2014). https://doi.org/10.4028/www.scientific.net/amm.552.123.
  • [4] Wang, B., Tan, X., Ma, X. & Li, S. Research on integrated tracking and communication ATP system based on four-quadrant detector. Proc. SPIE 13231, 132312N (2024). https://doi.org/10.1117/12.3040002.
  • [5] Gao, Z.-J, Dong, L.-L. & Xu, W.-H. Design and analysis of displacement measurement system based on the four-quadrant detector. Proc. SPIE 8905, 890531 (2013). https://doi.org/10.1117/12.2040172.
  • [6] Wu, X. et al. Study on the influence of random phase interference on the positioning performance of a four-quadrant detector. IEEE Photon. J. 16, 1-6 (2024). https://doi.org/10.1109/jphot.2024.3408285.
  • [7] Qiu, Z., Jia, W., Ma, X., Zou, B. & Lin, L. Neural-network-based method for improving measurement accuracy of four-quadrant detectors. Appl. Opt. 61, F9-F14 (2022). https://doi.org/10.1364/ao.444731.
  • [8] Safi, H., Dargahi, A. & Cheng, J. Beam tracking for UAV-assisted FSO links with a four-quadrant detector. IEEE Commun. Lett. 25, 3908-3912(2021). https://doi.org/10.1109/lcomm.2021.3113699.
  • [9] Ke, X. & Liang, H. Airborne laser communication system with automated tracking. Int. J. Opt. 2021, 9920368 (2021). https://doi.org/10.1155/2021/9920368.
  • [10] Bao, R. et al. Research on high-precision position detection based on a driven laser spot in an extreme ultraviolet light source. Photonics 11, 75 (2024). https://doi.org/10.3390/photonics11010075.
  • [11] Wang, X. et al. A method for improving the detection accuracy of the spot position of the four-quadrant detector in a free space optical communication system. Sensors 20, 7164 (2020). https://doi.org/10.3390/s20247164.
  • [12] Cao, W., Huang, Y., Fan, K.-C. & Zhang, Y. A novel machine learning algorithm for large measurement range of quadrant photodetector. Optik 227, 165971 (2021). https://doi.org/10.1016/j.ijleo.2020.165971.
  • [13] Manojlović, L. M. Quadrant photodetector sensitivity. Appl. Opt. 50, 3461-3469 (2011). https://doi.org/10.1364/ao.50.003461.
  • [14] Gu, S., Guo, Y. & Ju, Y. Design of optical quality detection system for four-quadrant detector lens. Acta Opt. Sin. 42, 0222001 (2022). (in Chinese) https://doi.org/10.3788/aos202242.0222001.
  • [15] Lu, B.-Y. ANFIS‐based controlled spherical rotator with quadrant photodiode to improve position detection accuracy. IET Optoelectron. 18, 146-156 (2024). https://doi.org/10.1049/ote2.12127.
  • [16] Li, D. & Zhang, Y. Research on factors influencing the positioning accuracy of four-quadrant detector. J. Phys.: Conf. Ser. 1983, 012087 (2021). https://doi.org/10.1088/1742-6596/1983/1/012087.
  • [17] Qiu, Z., Lin, L. & Chen, L. An active method to improve the measurement accuracy of four-quadrant detector. Opt. Lasers Eng. 146, 106718 (2021). https://doi.org/10.1016/j.optlaseng.2021.106718.
  • [18] Wang, X., Su, H., Liu, G., Han, J. & Wang, R. Investigation of high-precision algorithm for the spot position detection for four-quadrant detector. Optik 203, 163941 (2020). https://doi.org/10.1016/j.ijleo.2019.163941.
  • [19] Xiao, M., Zhang, Y. & Li, H. High-precision spot positioning algorithm based on fourquadrant detector. J. Phys.: Conf. Ser. 1633, 012122 (2020). https://doi.org/10.1088/1742-6596/1633/1/012122.
  • [20] Zhang, J. et al. Quadrant response model and error analysis of four-quadrant detectors related to the non-uniform spot and blind area. Appl. Opt. 57, 6898-6905 (2018). https://doi.org/10.1364/ao.57.006898.
  • [21] Zhang, J. et al. A calibration and correction method for the measurement system based on four-quadrant detector. Optik 204, 164226 (2020). https://doi.org/10.1016/j.ijleo.2020.164226.
  • [22] Wang, X., Su, X., Liu, G., Han, J. & Wang, R. Research on Photoelectric Signal Preprocessing of A Four-Quadrant Detector in Free Space Optical Communication System. in 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP) 628-632 (IEEE, 2020). https://doi.org/10.1109/ICSIP49896.2020.9339342.
  • [23] Wu, X.-J., Cui, J.-Y., Xu, C.-X., Zheng, W. & Zheng, Y.-C. The design of laser detection circuit with high reliability and large dynamic range based on APD. Proc. SPIE 10846, 108461U (2018). https://doi.org/10.1117/12.2505189.
  • [24] Michel, B., Novotny, L. & Dürig, U. Low-temperature compatible I-V converter. Ultramicroscopy 42, 1647-1652 (1992). https://doi.org/10.1016/0304-3991(92)90499-A.
  • [25] Mohammadi, M., Karimi, G. & Sarabi, H. G. Design of a microstrip Wilkinson power divider using a low pass filter with the particle swarm optimization algorithm. Sci. Rep. 14, 17637 (2024). https://doi.org/10.1038/s41598-024-66544-6.
  • [26] Green, T. Operational Amplifier Stability, Part 6 of 15: Capacitance-Load Stability: RISO, High Gain, and CF, Noise Gain (2005). http://educypedia.karadimov.info/library/acqt0704.pdf.
  • [27] Shlyonsky, V. & Gall, D. The OpenPicoAmp-100k: an open-source high-performance amplifier for single channel recording in planar lipid bilayers. Pflug. Arch. Eur. J. Physiol. 471, 1467-1480 (2019). https://doi.org/10.1007/s00424-019-02319-7.
Uwagi
1. Science Foundation Innovation and Development Joint Fund Project (CSTB2023NSCQ-LZX0173) and the Chongqing Municipal Key Special Project for Technological Innovation and Application Development (CSTB2024TIAD-KPX0109).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32ec60ab-8db0-4365-96f0-87169ebab5ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.