PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review : Metamaterial/metasurface applicationsin antenna domain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Owing to their remarkable capability to modify electromagnetic waves at microwave and optical frequencies, metasurfaces are now the subject of a substantial amount of study and find utility in a wide variety of applications. These artificial sheet materials, which are typically made up of metallic patches or dielectric etchings in planar or multi-layer confi-gurations with a thickness of subwavelength, have the benefits of being lightweight, easy to fabricate, and able to control wave propagation both on the surface and in the free space that surrounds it. This article provides an overview of recent advancements in the discipline and organizes those advancements according to their applications. The one-of-a-kind capabilities of many types of metasurfaces have come to light, beginning with the invention of frequency-selective surfaces, reconfigurable intelligent surfaces, and metamaterials. Patterning the metasurface unit cells allows for surface impedance to be altered and modified, which has wide-ranging applications in surface wave absorbers and surface waveguides. First and foremost, the purpose of this review article is to provide introductions to the fundamental metasurface, its important features, and application ideas. The authors address the most recent progress in metamaterial-inspired antennas and how they can be used to miniaturize antennas, increase gain and bandwidth, achieve circular polarization, and inhibit mutual coupling in multiple-input multiple-output (MIMO) antenna systems. In conclusion, exploring the research implications of the metasurface development trend and the significant engineering practical applications are shown in the conclusions.
Rocznik
Strony
art. no. e151692
Opis fizyczny
Bibliogr. 145 poz., rys., tab., wykr., fot.
Twórcy
autor
  • Department of Electronics and Communication Engineering, SJC Institute of Technology, Chickballapur, Karnataka, India
  • Visveswaraya Technological University, Belgaum, India
autor
  • Department of Electronics and Communication Engineering, Nagarjuna College of Engineering and Technology, Bengaluru, Karnataka, India
  • Visveswaraya Technological University, Belgaum, India
  • Department of Electronics and Communication Engineering, Nagarjuna College of Engineering and Technology, Bengaluru, Karnataka, India
  • Visveswaraya Technological University, Belgaum, India
  • Department of Electronics and Communication Engineering, Nagarjuna College of Engineering and Technology, Bengaluru, Karnataka, India
  • Visveswaraya Technological University, Belgaum, India
Bibliografia
  • [1] Wang, C., Chen, Y. & Yang, S. Dual-band dual-polarized antenna array with flat-top and sharp cutoff radiation patterns for 2G/3G/LTE cellular bands. IEEE Trans. Antennas Propag. 66, 5907-5917 (2018). https://doi.org/10.1109/TAP.2018.2866596.
  • [2] Yang, D., Liu, S. & Zhao, Z. A broadband dual‐polarized printed dipole antenna with low cross‐polarization and high isolation for base station applications. Microw. Opt. Technol. Lett. 59, 1107-1111 (2017). https://doi.org/10.1002/mop.30467.
  • [3] Zheng, D.-Z. & Chu, Q.-X. A wideband dual-polarized antenna with two independently controllable resonant modes and its array for base-station applications. IEEE Antennas Wirel. Propag. Lett. 16, 2014-2017 (2017). https://doi.org/10.1109/LAWP.2017.2693392.
  • [4] Tang, Z., Liu, J., Cai, Y.-M., Wang, J. & Yin, Y. A wideband differentially fed dual-polarized stacked patch antenna with tuned slot excitations. IEEE Trans. Antennas Propag. 66, 2055-2060 (2018). https://doi.org/10.1109/TAP.2018.2800764.
  • [5] Huang, H., Li, X. & Liu, Y. A novel vector synthetic dipole antenna and its common aperture array. IEEE Trans. Antennas Propag. 66, 3183-3188 (2018). https://doi.org/10.1109/TAP.2018.2819894.
  • [6] Ding, C., Sun, H.-H., Ziolkowski, R. W. & Jay Guo, Y. A dual layered loop array antenna for base stations with enhanced cross-polarization discrimination. IEEE Trans. Antennas Propag. 66, 6975-6985 (2018). https://doi.org/10.1109/TAP.2018.2869216.
  • [7] Zhang, Q. & Gao, Y. A compact broadband dual-polarized antenna array for base stations. IEEE Antennas Wirel. Propag. Lett. 17, 1073-1076 (2018). https://doi.org/10.1109/LAWP.2018.2832293.
  • [8] Ding, C. F, Zhang, X. Y, Zhang, Y., Mei Pan, Y. & Xue, Q. Compact broadband dual-polarized filtering dipole antenna with high selectivity for base-station applications. IEEE Trans. Antennas Propag. 66, 5747-5756 (2018). https://doi.org/10.1109/TAP.2018.2862465.
  • [9] Liang, Z., Lu, C., Li, Y., Liu, J. & Long, Y. A broadband dual-polarized antenna with front-to-back ratio enhancement using semicylindrical sidewalls. IEEE Trans. Antennas Propag. 66, 3735-3740 (2018). https://doi.org/10.1109/TAP.2018.2835500.
  • [10] EM Possible. Advanced Electromagnetics: 21 st Century Electro-magnetics (lecture online). https://empossible.net/wp-content/uploads/2020/06/Lecture-Intro-to-EM-Properties-of-Materials.pdf (2020).
  • [11] Metamaterials. Theory, design, and applications. (eds. Cui, T. J, Smith, D. R. & Liu, R.) 1-367 (Springer, 2010). https://doi.org/10.1007/978-1-4419-0573-4.
  • [12] Bose, J. C. On the rotation of plane of polarisation of electric wave by a twisted structure. Proc. R. Soc. London 63,146-152 (1898). https://doi.org/10.1098/rspl.1898.0019.
  • [13] Lindell, I. V., Sihvola, A. H. Kurkijarvi, J. Karl F. Lindman: the last Hertzian, and a harbinger of electromagnetic chirality. IEEE Antennas Propag. Mag. 34, 24-30 (1992). https://doi.org/10.1109/74.153530.
  • [14] Kock, W. E. Metallic delay lenses. Bell Syst. Tech. J. 27, 58-82 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01331.x.
  • [15] Engheta, N. Metamaterials with negative permittivity and permeability: background, salient features, and new trends. in IEEE MTT-S International Microwave Symposium Digest 187-190 (IEEE, 2003).
  • [16] Veselago. V. G. (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509-514 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003699.
  • [17] Pendry, J. B., Holden, A. J, Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996). https://doi.org/10.1103/PhysRevLett.76.4773.
  • [18] Pendry, J. B., Holden, A. J., Robbins, D. J., Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999). https://doi.org/10.1109/22.798002.
  • [19] Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184-4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184.
  • [20] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292,77-79 (2001). https://doi.org/10.1126/science.1058847.
  • [21] Nakano, H. Low‐Profile Natural and metamaterial Antennas. (Wiley, 2016).
  • [22] Esmail, B. A. F., Koziel, S. & Szczepanski, S. Overview of planar antenna loading MTMs for gain performance enhancement: The two decades of progress. IEEE Access 10, 27381-27403 (2022). https://doi.org/10.1109/ACCESS.2022.3157634.
  • [23] Sydoruk, O., Tatartschuk, E., Shamonina, E. & Solymar, L. Analytical formulation for the resonant frequency of split rings. J. Appl. Phys. 105, 014903 (2009). https://doi.org/10.1063/1.3056052.
  • [24] Vel Tech, Final Year Project - Metamaterial Based Antenna (2019). at https://www.youtube.com/watch?v=elbzxT_qxzc
  • [25] Meta Group. Novel Electromagnetic Media. Creating artificial response with metamaterials. http://people.ee.duke.edu/~drsmith/metamaterials/metamaterial_elements.htm
  • [26] Glybovski, S. B., Tretyakov, S. A., Belov, P. A., Kivshar, Y. S. & Simovski, C. R. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1-72 (2016). https://doi.org/10.1016/j.physrep.2016.04.004.
  • [27] Walia, S. et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015). https://doi.org/10.1063/1.4913751.
  • [28] Chen, Z., Guo, B., Yang, Y. & Cheng, C. Metamaterials-based enhanced energy harvesting: A review. Phys. B Condens. Matter. 438, 1-8 (2014). https://doi.org/10.1016/j.physb.2013.12.040.
  • [29] Syed Nasser, S. S., Liu, W. & Chen, Z. N. Wide bandwidth and enhanced gain of a low-profile dipole antenna achieved by integrated suspended metasurface. IEEE Trans. Antennas Propag. 66, 1540-1544 (2018). https://doi.org/10.1109/TAP.2018.2790161.
  • [30] Sharawi, M. S. Printed multi-band MIMO antenna systems and their performance metrics [Wireless Corner]. IEEE Antennas Propag. Mag. 55, 218-232 (2013). https://doi.org/10.1109/MAP.2013.6735522.
  • [31] Alibakhshikenari, M. et al. Interaction between closely packed array antenna elements using meta‐surface for applications such as MIMO systems and synthetic aperture radars. Radio Sci. 53, 1368-1381 (2018). https://doi.org/10.1029/2018RS006533.
  • [32] Alibakhshikenari, M. et al. A New Study to Suppress Mutual-Coupling Between Waveguide Slot Array Antennas Based on Metasurface Bulkhead for MIMO Systems. in 2018 Asia-Pacific Microwave Conference (APMC) 500-502 (IEEE, 2018).
  • [33] Alibakhshikenari, M. et al. Study on Antenna Mutual Coupling Suppression Using Integrated Metasurface Isolator for SAR and MIMO Applications. in 2018 48th European Microwave Conference (EuMC) 1425-1428 (IEEE, 2018).
  • [34] Alibakhshikenari, M. et al. Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications. Prog. Electromagn. Res. Lett. 75, 105-111 (2018). https://doi.org/10.2528/PIERL18021908.
  • [35] Lin, I.-H., DeVincentis, M., Caloz, C. & Itoh, T. Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Tech. 52, 1142-1149 (2004). https://doi.org/10.1109/TMTT.2004.825747.
  • [36] Thomas, Z. M., Grzegorczyk, T. M., Wu, B.-I., Chen. X. & Kong, J. A. Design and measurement of a four-port device using metamaterials. Opt. Express 13, 4737-4744 (2005). https://doi.org/10.1364/OPEX.13.004737.
  • [37] Caloz, C. & Itoh, T. A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics. IEEE Microw. Wirel. Compon. Lett. 14, 31-33 (2004). https://doi.org/10.1109/LMWC.2003.821506.
  • [38] Antoniades, M. A. & Eleftheriades, G. V. A broadband Wilkinson balun using microstrip metamaterial lines. IEEE Antennas Wirel. Propag. Lett. 4, 209-212 (2005). https://doi.org/10.1109/LAWP.2005.851005.
  • [39] Abbasi, M. A. B., Antoniades, M. A. & Nikolaou, S. A compact reconfigurable NRI-TL MTM phase shifter for antenna applications. IEEE Trans Antennas Propag. 66, 1025-1030 (2018). https://doi.org/10.1109/TAP.2017.2777520.
  • [40] Cao, T., Wei, C., Simpson, R. E., Zhang, L. & Cryan, M. J. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 4, 3955 (2014). https://doi.org/10.1038/srep03955.
  • [41] Thomas, Z. M., Grzegorczyk, T. M., Wu, B.-I. & Kong, J. A. Enhanced microstrip stopband filter using a metamaterial substrate. Microw. Opt. Technol. Lett. 48, 1522-1525 (2006). https://doi.org/10.1002/mop.21703.
  • [42] Zvolensky, T., Gollub, J. N., Marks, D. L. & Smith, D. R. Design and analysis of a W-band metasurface-based computational imaging system. IEEE Access 5, 9911-9918 (2017). https://doi.org/10.1109/ACCESS.2017.2703860.
  • [43] Modi, A. Y., Balanis, C. A., Birtcher, C. R. & Shaman, H. New class of RCS-reduction metasurfaces based on scattering cancellation using array theory. IEEE Trans. Antennas Propag. 67, 298-308 (2019). https://doi.org/10.1109/TAP.2018.2878641.
  • [44] Faruque, M. R. I., Ahamed, E., Rahman, M. A. & Islam, M. T. Flexible nickel aluminate (NiAl2O4) based dual-band double negative metamaterial for microwave applications. Results Phys. 14, 102524 (2019). https://doi.org/10.1016/j.rinp.2019.102524.
  • [45] Ramachandran, T., Faruque, M. R. I. & Ahamed, E. Composite circular split ring resonator (CSRR)-based left-handed metamaterial for C- and Ku-band application. Results Phys. 14, 102435 (2019). https://doi.org/10.1016/j.rinp.2019.102435.
  • [46] Chuma, E. L., Iano, Y., Fontgalland, G. & Bravo Roger, L. L. Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator. IEEE Sens. J. 18, 9978-9983 (2018). https://doi.org/10.1109/JSEN.2018.2872859.
  • [47] Chen, H. et al. Magnetic properties of s-shaped split-ring resonators. Prog. Electromagn. Res. 51, 231-247 (2005). https://doi.org/10.2528/PIER04051201.
  • [48] Greegor, R. B. et al. Simulation and testing of a graded negative index of refraction lens. Appl. Phys. Lett. 87, 091114 (2005). https://doi.org/10.1063/1.2037202.
  • [49] Smith, D. L., Medgyesi-Mitschang, L. N. & Forester, D. W. Surface integral equation formulations for left-handed materials. Prog. Electromagn. Res. 51, 27-48 (2005). https://doi.org/10.2528/PIER04032203.
  • [50] Zeng, Y. et al. A Matryoshka-like seismic metamaterial with wide band-gap characteristics. Int. J. Solids Struct. 185-186, 334-341 (2020). https://doi.org/10.1016/j.ijsolstr.2019.08.032.
  • [51] Abielmona. S., Nguyen, H. V. & Caloz, C. Analog direction of arrival estimation using an electronically-scanned CRLH leaky- wave antenna. IEEE Trans. Antennas Propag. 59, 1408-1412 (2011). https://doi.org/10.1109/TAP.2011.2109672.
  • [52] Lim, S., Caloz, C. & Itoh, T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Trans. Microw. Theory Tech. 52, 2678-2690 (2004). https://doi.org/10.1109/TMTT.2004.838302.
  • [53] Alibakhshikenari, M. et al. Mutual-coupling isolation using embedded metamterial EM bandgap decoupling slab for densely packed array antennas. IEEE Access 7, 51827-51840 (2019). https://doi.org/10.1109/ACCESS.2019.2909950.
  • [54] Alibakhshikenari, M. et al. Mutual coupling suppression between two closely placed microstrip patches using em-bandgap MTM fractal loading. IEEE Access 7, 23606-23614 (2019). https://doi.org/10.1109/ACCESS.2019.2899326.
  • [55] Alibakhshikenari, M., Virdee, B. S., Ali, A. & Limiti, E. A novel monofilar‐Archimedean MTM inspired leaky‐wave antenna for scanning application for passive radar systems. Microw. Opt. Technol. Lett. 60, 2055-2060 (2018). https://doi.org/10.1002/mop.31300.
  • [56] Caloz, C., Itoh, T. & Rennings, A. CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag. Mag. 50, 25-39 (2008). https://doi.org/10.1109/MAP.2008.4674709.
  • [57] Antoniades, M. A., Zhu, J., Selvanayagam, M. & Eleftheriades, G. V. Compact, Wideband and Multiband Antennas Based on Metamaterial Concepts. in Proceedings of the Fourth European Conference on Antennas and Propagation 1-5 (IEEE, 2010).
  • [58] Alibakhshikenari, M. et al. Beam‐scanning leaky‐wave antenna based on CRLH‐MTM for millimetre‐wave applications. IET Microw. Antennas Propag. 13, 1129-1133 (2019). https://doi.org/10.1049/iet-map.2018.5101.
  • [59] Bongard, F. & Mosig, J. R. A Novel Composite Right/Left-Handed Unit Cell and Potential Antenna Applications. in 2008 IEEE Antennas and Propagation Society International Symposium 1-4 (IEEE, 2008).
  • [60] Liu, L., Caloz, C. & Itoh, T. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett. 38, 1414-1416 (2002). https://doi.org/10.1049/el:20020977.
  • [61] Dash, U. A. & Sahu, S. Gain enhancement of truncated conical dielectric ring resonator antenna based on metasurface walls. Int. J. RF Microw. Comput. Eng. 28, e21499 (2018). https://doi.org/10.1002/mmce.21499.
  • [62] Erentok, A. & Ziolkowski, R. W. Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag. 56, 691-707 (2008). https://doi.org/10.1109/TAP.2008.916949.
  • [63] Venkateswara Rao, M., Madhav, B. T. P., Anilkumar, T. & Prudhvi Nadh, B. Metamaterial-inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. AEU - Int. J. Electron. Commun. 97, 229-241 (2018). https://doi.org/10.1016/j.aeue.2018.10.018.
  • [64] Panda, A. K., Sahu, S. & Mishra, R. K. DRA gain enhancement using a planar metamaterial superstrate. Int. J. RF Microw. Comput. Eng. 28, e21445 (2018). https://doi.org/10.1002/mmce.21445.
  • [65] Alibakhshikenari, M. et al. High-isolation leaky-wave array antenna based on CRLH-MTM implemented on SIW with ±30 o frequency beam-scanning capability at millimetre-waves. Electronics 8, 642 (2019). https://doi.org/10.3390/electronics8060642.
  • [66] Sihvola, A., Semchenko, I. & Khakhomov, S. View on the history of electromagnetics of metamterials: Evolution of the congress series of complex media. Photonics Nanostructures - Fundam. Appl. 12, 279-283 (2014). https://doi.org/10.1016/j.photonics.2014.03.004.
  • [67] Li, A., Singh, S. & Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 7, 989-1011 (2018). https://doi.org/10.1515/nanoph-2017-0120.
  • [68] Zheng, Y. et al. Metamaterial‐based patch antenna with wideband RCS reduction and gain enhancement using improved loading method. IET Microw. Antennas Propag. 11, 1183-1189 (2017). https://doi.org/10.1049/iet-map.2016.0746.
  • [69] Nabil, M. & Faisal, M. M. A. Design, Simulation and analysis of a high gain small size array antenna for 5G wireless communication. Wirel. Pers. Commun. 116, 2761-2776 (2021). https://doi.org/10.1007/s11277-020-07819-9.
  • [70] Augustin, G., Rao, Q. & Denidni, T. A. Low-Profile Antennas. in Handbook of Antenna Technologies (eds:Chen, Z.-N., Liu, D., Nakana, H., Qing, X. & Zwick, T.) 1531-1564 (Springer, 2016).
  • [71] Nasimuddin & Esselle, K. P, A low-profile compact microwave antenna with high gain and wide bandwidth. IEEE Trans. Antennas Propag. 55, 1880-1883 (2007). https://doi.org/10.1109/TAP.2007.898644.
  • [72] Wang, Z. & Liu, J. A compact directional microstrip antenna with wide bandwidth, high gain, and high front‐to‐back ratio. Microw. Opt. Technol. Lett. 62, 308-314 (2020). https://doi.org/10.1002/mop.32007.
  • [73] Wang, J., Liu, Q. & Zhu, L. Bandwidth enhancement of a differential-fed equilateral triangular patch antenna via loading of shorting posts. IEEE Trans. Antennas Propag. 65, 36-43 (2017). https://doi.org/10.1109/TAP.2016.2630660.
  • [74] Katyal, A. & Basu, A. Compact and broadband stacked microstrip patch antenna for target scanning applications. IEEE Antennas Wirel. Propag. Lett. 16, 381-384 (2017). https://doi.org/10.1109/LAWP.2016.2578723.
  • [75] Xu, K. D., Xu, H., Liu, Y., Li, Y. & Liu, Q. H. Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement. IEEE Access 6, 11624-11633 (2018). https://doi.org/10.1109/ACCESS.2018.2794962.
  • [76] Mandal, K. & Sarkar, P. P. A compact low profile wideband U-shape antenna with slotted circular ground plane. AEU - Int. J. Electron. Commun. 70, 336-340 (2016). https://doi.org/10.1016/j.aeue.2015.12.011.
  • [77] Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R. A., Virdee, B. S. & Lomiti, E. Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications. AEU - Int. J. Electron. Commun. 70, 910-919 (2016). https://doi.org/10.1016/j.aeue.2016.04.003.
  • [78] Roy, S. & Chakraborty, U. Metamaterial-embedded dual wideband microstrip antenna for 2.4 GHz WLAN and 8.2 GHz ITU band applications. Waves Random Complex Media 30, 193-207 (2020). https://doi.org/10.1080/17455030.2018.1494396.
  • [79] Roy, S. & Chakraborty, U. Gain enhancement of a dual‐band WLAN microstrip antenna loaded with diagonal pattern metamaterials. IET Commun. 12, 1448-1453 (2018). https://doi.org/10.1049/iet-com.2018.0170.
  • [80] Sahoo, R. & Vakula, D. Gain enhancement of conformal wideband antenna with parasitic elements and low index metamaterial for WiMAX application. AEU - Int. J. Electron. Commun. 105, 24-35 (2019). https://doi.org/10.1016/j.aeue.2019.03.014.
  • [81] Urul, B. Gain enhancement of microstrip antenna with a novel DNG material. Microw. Opt. Technol. Lett. 62, 1824-1829 (2020). https://doi.org/10.1002/mop.32240.
  • [82] Ziolkowski, R. W. & Kipple, A. D. Application of double negative materials to increase the power radiated by electrically small antennas. IEEE Trans. Antennas Propag. 51, 2626-2640 (2003). https://doi.org/10.1109/TAP.2003.817561.
  • [83] Hasan, M. M. et al. Gain and isolation enhancement of a wideband MIMO antenna using metasurface for 5G sub-6 GHz communication systems. Sci. Rep. 12, 9433 (2022). https://doi.org/10.1038/s41598-022-13522-5.
  • [84] Tariq, S., Naqvi, S. I., Hussain, N. & Amin, Y. A metasurface-based MIMO antenna for 5G millimeter-wave applications. IEEE Access 9, 51805-51817 (2021). https://doi.org/10.1109/ACCESS.2021.3069185.
  • [85] Wang, J., Wong, H., Ji, Z. & Wu, Y. Broadband CPW-Fed aperture coupled metasurface antenna. IEEE Antennas Wirel. Propag. Lett. 18, 517-520 (2019). https://doi.org/10.1109/LAWP.2019.2895618.
  • [86] Panda, P. K. & Ghosh, D. Wideband and high gain tuning fork shaped monopole antenna using high impedance surface. AEU - Int. J. Electron. Commun. 111, 152920 (2019). https://doi.org/10.1016/j.aeue.2019.152920.
  • [87] Zheng, Y. et al. Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans. Antennas Propag. 66, 590-599 (2018). https://doi.org/10.1109/TAP.2017.2780896.
  • [88] Zhu, J., Li, S., Liao, S. & Xue, Q. Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor. IEEE Antennas Wirel. Propag. Lett. 17, 458-462 (2018). https://doi.org/10.1109/LAWP.2018.2795018.
  • [89] Pandeeswari, R. & Raghavan, S, Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement. Microw. Opt. Technol. Lett. 57, 292-296 (2015). https://doi.org/10.1002/mop.28835.
  • [90] Ghosh, A., Mandal, T. & Das, S. Design of triple band slot-patch antenna with improved gain using triple band artificial magnetic conductor. Radioengineering 25, 442-448 (2016). https://doi.org/10.13164/re.2016.0442.
  • [91] Patel, S. K. & Argyropoulos, C. Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators. J. Electromagn. Waves Appl. 30, 945-961 (2016). https://doi.org/10.1080/09205071.2016.1167633.
  • [92] Ikonen, P. M. T., Maslovski, S. I., Simovski, C. R. & Tretyakov, S. A. On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas. IEEE Trans. Antennas Propag. 54, 1654-1662 (2006). https://doi.org/10.1109/TAP.2006.875912.
  • [93] Cao, W., Ma, W., Peng, W. & Chen, Z. N. Bandwidth-enhanced electrically large microstrip antenna loaded with SRR structures. IEEE Antennas Wirel. Propag. Lett. 18, 576-580 (2019). https://doi.org/10.1109/LAWP.2019.2896384.
  • [94] Liu, Z., Wang, P. & Zeng, Z. Enhancement of the gain for microstrip antennas using negative permeability metamaterial on low temperature co-fired ceramic (LTCC) substrate. IEEE Antennas Wirel. Propag. Lett. 12, 429-432 (2013). https://doi.org/10.1109/LAWP.2013.2254697.
  • [95] Rahmat-Samii, Y. Electromagnetic Band Gap (EBG) Structures in Antenna Engineering: from Fundamentals to Recent Advances. in 2008 Asia-Pacific Microwave Conference 1-2 (IEEE, 2008).
  • [96] Sambandam, P. et al. Compact monopole antenna backed with fork-slotted EBG for wearable applications. IEEE Antennas Wirel. Propag. Lett. 19, 228-232 (2020). https://doi.org/10.1109/LAWP.2019.2955706.
  • [97] Ahdi Rezaeieh, S., Antoniades, M. A. & Abbosh, A. M. Bandwidth and directivity enhancement of loop antenna by nonperiodic distribution of mu-negative metamaterial unit cells. IEEE Trans. Antennas Propag. 64, 3319-3329 (2016). https://doi.org/10.1109/TAP.2016.2574878.
  • [98] Arora, C., Pattnaik, S. S. & Baral, R. N. Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using MTM inspired technique. AEU - Int. J. Electron. Commun. 79, 124-131 (2017). https://doi.org/10.1016/j.aeue.2017.05.045.
  • [99] Meriche, M. A., Attia, H., Messai, A.,Mitu, S. S. I. & Denidni, T. A. Directive wideband cavity antenna with single-layer meta-superstrate. IEEE Antennas Wirel. Propag. Lett. 18, 1771-1774 (2019). https://doi.org/10.1109/LAWP.2019.2929579.
  • [100] Verma, A., Singh, A. K., Srivastava, N., Patil, S. & Kanaujia, B. K. Hexagonal ring electromagnetic band gap‐based slot antenna for CP and performance enhancement. Microw. Opt. Technol. Lett. 62, 2576-2587 (2020). https://doi.org/10.1002/mop.32342.
  • [101] Chopra, R. & Kumar, G. Compact, broadband, and high gain directional endfire antenna. Microw. Opt. Technol. Lett. 62, 2546-2553 (2020). https://doi.org/10.1002/mop.32336.
  • [102] Wu, T., Chen, J. & Wu, P.-F. Broadband and multi-mode Fabry-Pérot cavity antenna with gain enhancement. AEU - Int. J. Electron. Commun. 127, 153440 (2020). https://doi.org/10.1016/j.aeue.2020.153440.
  • [103] Sonak, R., Ameen, M. & Chaudhary, R. K. High gain dual-band open-ended MTM antenna utilizing CRR with broadside radiation characteristics based on left-handed AMC and PEC. Mater. Res. Express 6, 055811 (2019). https://doi.org/10.1088/2053-1591/ab0683.
  • [104] Kumar, S. & Kumari, R. Bandwidth enhanced coplanar waveguide‐fed composite right/left handed antenna loaded with resonating rings. IET Microw. Antennas Propag. 13, 2134-2140 (2019). https://doi.org/10.1049/iet-map.2018.5931.
  • [105] Wong, K. Compact and Broadband Microstrip Antennas. (Wiley, 2002).
  • [106] Gao, S., Luo, Q. & Zhu, F. Circularly Polarized Antennas. (Wiley, 2014).
  • [107] Lee, S. W. & Sung, Y. J. Simple polarization-reconfigurable antenna with t-shaped feed. IEEE Antennas Wirel. Propag. Lett. 15, 114-117 (2016). https://doi.org/10.1109/LAWP.2015.2432462.
  • [108] Lin, W. & Wong, H. Wideband CP reconfigurable antenna. IEEE Trans. Antennas Propag. 63, 5938-5944 (2015). https://doi.org/10.1109/TAP.2015.2489210.
  • [109] Wang, K. X. & Wong, H. A reconfigurable CP/LP antenna with cross-probe feed. IEEE Antennas Wirel. Propag. Lett. 16, 669-672 (2017). https://doi.org/10.1109/LAWP.2016.2598248.
  • [110] Zhang, L., Gao, S., Luo, Q., Young, P. R. & Li, Q. Wideband loop antenna with electronically switchable CP. IEEE Antennas Wirel. Propag. Lett. 16, 242-245 (2017). https://doi.org/10.1109/LAWP.2016.2570859.
  • [111] Malathong, M., Sonsilphong, A., Panpradit, W. & Wongkasem, N. Chiral Metamatrisl Based Circularly Polarized Microstrip Antennas. in 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications 898-901 (IEEE, 2011).
  • [112] Wang, W. et al. Subwavelength-cavity high-gain circularly polarized antenna with planar metamaterials. Appl. Sci. 13, 7665 (2023). https://doi.org/10.3390/app13137665.
  • [113] Tang, M.-C. & Ziolkowski, R. W. Frequency-agile, efficient, circularly polarized, near-field resonant antenna: Designs and measurements. IEEE Trans Antennas Propag. 63, 5203-5209 (2015). https://doi.org/10.1109/TAP.2015.2477563.
  • [114] Jin, P. & Ziolkowski, R. W. Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas. IEEE Trans. Antennas Propag. 59, 1446-1459 (2011). https://doi.org/10.1109/TAP.2011.2123053.
  • [115] Chaudhary, P., Kumar, A., Kumar, P., Kanaujia, B. K. & Birwal, A. Design of a new metasurface and its application for linear to circular polarisation conversion. Int. J. Electron. 108, 411-425 (2021). https://doi.org/10.1080/00207217.2020.1794050.
  • [116] Zhu, H. L., Cheung, S. W., Chung, K. L. & Yuk, T. I. Linear-to-CP conversion using metasurface. IEEE Trans. Antennas Propag. 61, 4615-4623 (2013). https://doi.org/10.1109/TAP.2013.2267712.
  • [117] Goswami, S. & Karia, D. C. A metamaterial‐inspired circularly polarized antenna for implantable applications. Eng. Rep. 2, e12251 (2020). https://doi.org/10.1002/eng2.12251.
  • [118] Arora, C. Metamaterial-Inspired Circularly Polarized Microstrip Patch Antenna. in Computer Communication, Networking and IoT (eds. Bhateja, V., Satapathy, S. C., Traviezo-Gonzales, C. M. & Flores-Fuentes, V.) 183-190 (Springer, 2021).
  • [119] Ashish, J. & Prakasa Rao, A. A dual band CRLH metamaterial-inspired planar antenna for wireless applications. Radioengineering 31, 15-22 (2022). https://doi.org/10.13164/re.2022.0015.
  • [120] Majeed, A. et al. An ultra-wideband linear-to-CP converter based on a circular, pie-shaped reflective metasurface. Electronics 11, 1681 (2022). https://doi.org/10.3390/electronics11111681.
  • [121] Montalvão, E. S. R., Montalvão, A. C. P. S., Campos, A. L. P. S. & Gomes Neto, A. A new model of metasurface used for linear‐to‐CP conversion in antenna array. Microw. Opt. Technol. Lett. 58, 861- 864 (2016). https://doi.org/10.1002/mop.29681.
  • [122] Revathi, S., Sivakumar, E. & Ramachandran, B. Metasurface based circularly polarized reconfigurable antenna. Indian J. Sci. Technol. 9, 1-8 (2016). https://doi.org/10.17485/ijst/2016/v9i44/101959.
  • [123] Huang, Y., Yang, L., Li, J., Wang, Y. & Wen, G. Polarization conversion of metasurface for the application of wide band low-profile CP slot antenna. Appl. Phys. Lett. 109, 054101 (2016). https://doi.org/10.1063/1.4960198.
  • [124] Chen, X., Zhang, S. & Li, Q. A review of mutual coupling in MIMO systems. IEEE Access 6, 24706-24719 (2018). https://doi.org/10.1109/ACCESS.2018.2830653.
  • [125] Liu, R. et al. Neutralization line decoupling tri-band multiple-input multiple-output antenna design. IEEE Access 8, 27018-27026 (2020). https://doi.org/10.1109/ACCESS.2020.2971038.
  • [126] Wang, L. et al. Compact UWB MIMO antenna with high isolation using fence-type decoupling structure. IEEE Antennas Wirel. Propag. Lett. 18, 1641-1645 (2019). https://doi.org/10.1109/LAWP.2019.2925857.
  • [127] Srivastava, G. & Mohan, A. Compact MIMO slot antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 15, 1057-1060 (2016). https://doi.org/10.1109/LAWP.2015.2491968.
  • [128] Banerjee, J., Karmakar, A., Ghatak, R. & Poddar, D. R. Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic. J. Electromagn. Waves Appl. 31, 1550- 1565 (2017). https://doi.org/10.1080/09205071.2017.1354727.
  • [129] Wu, L., Xia, Y., Cao, X. & Xu, Z. A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics. Int. J. Microw. Wirel. Technol. 10, 948-955 (2018). https://doi.org/10.1017/S1759078718000508.
  • [130] Hassan, M. M. et al. A novel UWB MIMO antenna array with band notch characteristics using parasitic decoupler. J. Electromagn. Waves Appl. 34, 1225-1238 (2020). https://doi.org/10.1080/09205071.2019.1682063.
  • [131] Iqbal, A., Saraereh, O. A., Bouazizi, A. & Basir, A. Metamaterial-based highly isolated MIMO antenna for portable wireless applications. Electronics 7, 267 (2018). https://doi.org/10.3390/electronics7100267.
  • [132] Mark, R., Rajak, N., Mandal, K. & Das, S. Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. AEU - Int. J. Electron. Commun. 100, 144-152 (2019). https://doi.org/10.1016/j.aeue.2019.01.011.
  • [133] Li, M., Zhong, B. G. & Cheung, S. W. Isolation enhancement for MIMO patch antennas using near-field resonators as coupling-mode transducers. IEEE Trans. Antennas Propag. 67, 755-764 (2019). https://doi.org/10.1109/TAP.2018.2880048.
  • [134] Dwivedi, A. K., Sharma, A., Singh, A. K. & Singh, V. Metamaterial inspired dielectric resonator MIMO antenna for isolation enhancement and linear to CP of waves. Measurement 182, 109681 (2021). https://doi.org/10.1016/j.measurement.2021.109681.
  • [135] Sufian, M. A. et al. Isolation enhancement of a metasurface-based MIMO antenna using slots and shorting pins. IEEE Access 9, 73533-73543 (2021). https://doi.org/10.1109/ACCESS.2021.3079965.
  • [136] Najafy, V. & Bemani, M. Mutual-coupling reduction in triple-band MIMO antennas for WLAN using CSRRs. Int. J. Microw. Wirel. Technol. 12, 762-768 (2020). https://doi.org/10.1017/S1759078720000215.
  • [137] Yang, Z., Xiao, J. & Ye, Q. Enhancing MIMO antenna isolation characteristic by manipulating the propagation of surface wave. IEEE Access 8, 115572-115581 (2020). https://doi.org/10.1109/ACCESS.2020.3004467.
  • [138] Kumar, A., Ansari, A. Q., Kanaujia, B. K. & Kishor, J. High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications. Frequenz 72, 415-427 (2018). https://doi.org/10.1515/freq-2017-0276.
  • [139] Liu, Z. et al. Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials. Appl. Phys. Lett. 109, 153505 (2016). https://doi.org/10.1063/1.4964513.
  • [140] Sandi, E., Diamah, A. & Al Mawaddah, M. High isolation MIMO antenna for 5G C-band application by using combination of dielectric resonator, electromagnetic bandgap, and defected ground structure. EURASIP J. Wirel. Commun. Netw. 2022, 125 (2022). https://doi.org/10.1186/s13638-022-02208-1.
  • [141] Shabbir, T. et al. Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications. IEEE Access 8, 106982-106992 (2020). https://doi.org/10.1109/ACCESS.2020.3000134.
  • [142] Das, G., Sahu, N. K., Sharma, A., Gangwar, R. K. & Sharawi, M. S. FSS-based spatially decoupled back-to-back four-port MIMO DRA with multidirectional pattern diversity. IEEE Antennas Wirel. Propag. Lett. 18, 1552-1556 (2019). https://doi.org/10.1109/LAWP.2019.2922276.
  • [143] Irene, G. & Rajesh, A. A dual-polarized UWB-MIMO antenna with IEEE 802.11ac band-notched characteristics using split-ring resonator. J. Comput. Electron. 17, 1090-1098 (2018). https://doi.org/10.1007/s10825-018-1213-x.
  • [144] Thakur, E., Jaglan, N. & Gupta, S. D. Design of compact triple band-notched UWB MIMO antenna with TVC-EBG structure. J. Electromagn. Waves Appl. 34, 1601-1615 (2020). https://doi.org/10.1080/09205071.2020.1775136.
  • [145] Ibrahim, A. A. & Abdalla, M. A. CRLH MIMO antenna with reversal configuration. AEU - Int. J. Electron. Commun. 70, 1134-1141 (2016). https://doi.org/10.1016/j.aeue.2016.05.012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32e94e8e-c7b5-4b2a-8594-c9ac7dc9c78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.