PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The partial slip contact problem for a monoclinic coated half plane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the partial slip contact problem for a monoclinic coated half plane indented by a rigid cylindrical punch is considered. The main objective of current study is to illustrate the effects of material anisotropy on the surface stresses, the contact width and the stick/slip region of the partial slip contact. Using the Fourier integral transform and boundary conditions of the problem, the singular integral equation of the system is obtained. Numerical results of the problem are provided for typical fibrous composites applying the Gauss-Chebyshev discretization method. Sensitivity analysis of the surface stresses is performed for both the material and geometric parameters. The results indicate that the coating fiber angle can significantly alter the distribution of contact tractions. As the fiber angle ranges from θ = 0° to θ = 90°, the contact half-length increases up to 20% whereas the stick zone half-length varies significantly.
Rocznik
Strony
13--37
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Department of Civil Engineering, Karadeniz Technical University, Trabzon, Turkey
autor
  • Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
autor
  • College of Engineering and Technology, American University of the Middle East, Kuwait
Bibliografia
  • 1. M. Ciavarella, G. Demelio, A review of analytical aspects of fretting fatigue, with extension to damage parameters, and application to dovetail joints, International Journal of Solids and Structures, 38, 10–13, 1791–811, 2001.
  • 2. R. Rajasekaran, D. Nowell, Fretting fatigue in dovetail blade roots: experiment and analysis, Tribology International, 39, 10, 1277–1285, 2006.
  • 3. J. Juoksukangas, A. Lehtovaara, A. Mäntylä, Experimental and numerical investigation of fretting fatigue behavior in bolted joints, Tribology International, 103, 440–448, 2016.
  • 4. C. Jiménez-Peña, R.H. Talemi, B. Rossi, D. Debruyne, Investigations on the fretting fatigue failure mechanism of bolted joints in high strength steel subjected to different levels of pre-tension, Tribology International, 108, 128–140, 2017.
  • 5. J. Chao, Fretting-fatigue induced failure of a connecting rod, Engineering Failure Analysis, 96, 186–201, 2019.
  • 6. T. Rauert, J. Herrmann, P. Dalhoff, M. Sander, Fretting fatigue induced surface cracks under shrink fitted main bearings in wind turbine rotor shafts, Procedia Structural Integrity, 2, 3601–3609, 2016.
  • 7. D. Houghton, P.M. Wavish, E.J. Williams, S.B. Leen, Multiaxial fretting fatigue testing and prediction for splined couplings, International Journal of Fatigue, 31, 11–12, 1805–1815, 2009.
  • 8. J. Ding, S.B. Leen, E.J. Williams, P.H. Shipway, Finite element simulation of fretting wear-fatigue interaction in spline couplings, Tribology-Materials, Surfaces & Interfaces, 2, 1, 10–24, 2008.
  • 9. M. Buciumeanu, A.S. Miranda, A.C. Pinho, F.S. Silva, Design improvement of a automotive-formed suspension component subjected to fretting fatigue, Engineering Failure Analysis, 14, 5, 810–821, 2007.
  • 10. H. Mohrbacher, J.P. Celis, J.R. Roos, Laboratory testing of displacement and load induced fretting, Tribology International, 28, 5, 269–2678, 1995.
  • 11. Z.R. Zhou, L. Vincent, Effect of external loading on wear maps of aluminium alloys, Wear, 162, 619–623, 1993.
  • 12. L. Vincent, Y. Berthier, M. Godet, Testing methods in fretting fatigue: a critical appraisal. Standardization of fretting fatigue test methods and equipment, ASTM International, 33-33-16, 1992.
  • 13. M. Kuno, R.B. Waterhouse, D. Nowell, D.A. Hills, Initiation and growth of fretting fatigue cracks in the partial slip regime, Fatigue & Fracture of Engineering Materials & Structures, 12, 5, 387–398, 1989.
  • 14. L. Gallego, D. Nélias, Modeling of fretting wear under gross slip and partial slip conditions, Journal of Tribology, 129, 3, 528–535, 2007.
  • 15. I. Goryacheva, P. Rajeev, T. Farris, Wear in partial slip contact, Journal of Tribology, 123, 4, 848–856, 2000.
  • 16. H. Andresen, D.A. Hills, J.R. Barber, J. Vazquez, Frictional half-plane contact problems subject to alternating normal and shear loads and tension in the steady state, International Journal of Solids and Structures, 168, 166–171, 2019.
  • 17. H. Andresen, D.A. Hills, J.R. Barber, J. Vázquez, Steady state cyclic behaviour of a half-plane contact in partial slip subject to varying normal load, moment, shear load, and moderate differential bulk tension, International Journal of Solids and Structures, 82, 156–161, 2020.
  • 18. L. Galin, G. Gladwell, Contact Problems, Springer, Dordrecht, Netherlands, 2008.
  • 19. C. Bagault, D. Nélias, M. Baietto, Contact analyses for anisotropic half space: effect of the anisotropy on the pressure distribution and contact area, Journal of Tribology, 134, 3, 2012.
  • 20. H. Fan, L. Keer, Two-dimensional contact on an anisotropic elastic half-space, Journal of Applied Mechanics, 61, 2, 250–255, 1994.
  • 21. L.M. Brock, H.G. Georgiadis, Multiple-zone sliding contact with friction on an anisotropic thermoelastic half-space, International Journal of Solids and Structures, 44, 9, 2820–2836, 2007.
  • 22. T. Hayashi, H. Koguchi, N. Nishi, Contact analysis for anisotropic elastic materials considering surface stress and surface elasticity, Journal of the Mechanics and Physics of Solids, 61, 8, 1753–1767, 2013.
  • 23. L. Rodríguez-Tembleque, F.C. Buroni, R. Abascal, A. Sáez, 3D frictional contact of anisotropic solids using BEM, European Journal of Mechanics-A/Solids, 30, 2, 95–104, 2011.
  • 24. L. Rodríguez-Tembleque, M. Aliabadi, R. Abascal, Anisotropic contact and wear simulation using boundary elements, Key Engineering Materials, 618, 73–98, 2014.
  • 25. Y. Alinia, M.A. Güler, On the fully coupled partial slip contact problems of orthotropic materials loaded by flat and cylindrical indenters, Mechanics of Materials, 114, 119–133, 2017.
  • 26. J. Su, L.L Ke, Y.S. Wang, Two-dimensional fretting contact analysis of piezo electric materials, International Journal of Solids and Structures, 73, 41–54, 2015.
  • 27. J. Su, L.L Ke, Y.S. Wang, Two-dimensional fretting contact of piezoelectric materials under a rigid conducting cylindrical punch, Journal of Mechanics of Materials and Structures, 11, 5, 535–558, 2016.
  • 28. J. Su, L.L Ke, Y.S. Wang, Fretting contact of a functionally graded piezoelectric layered half-plane under a conducting punch, Smart Materials and Structures, 25, 2, 025014, 2016.
  • 29. I ÇömezI Y. Alinia, M.A. Güler, S. El-Borgi, Partial slip contact analysis for a monoclinic half plane, Mathematics and Mechanics of Solids, 26, 3, 401–421, 2021.
  • 30. K.B. Yilmaz, I ÇömezI M.A. Güler, B.O. Yildirim, Sliding frictional contact analysis of a monoclinic coating/isotropic substrate system, Mechanics of Materials, 137, 103–132, 2019.
  • 31. D. Spence, Self similar solutions to adhesive contact problems with incremental loading, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 305, 1480, 55–80, 1968.
  • 32. D. Nowell, D.A. Hills, A. Sackfield, Contact of dissimilar elastic cylinders under normal and tangential loading, Journal of the Mechanics and Physics of Solids, 36, 1, 59–75, 1988.
  • 33. F. Erdogan, Mixed boundary value problems, Mechanics Today, S. Nemat-Nasser [ed.], 4, 1–86, 2013.
  • 34. D. Nowell, D.A. Hills, Tractive rolling of dissimilar elastic cylinders, International Journal of Mechanical Sciences, 30, 6, 427–439, 1988.
  • 35. M.A. Güler, S. Adibnazari, Y. Alinia, Tractive rolling contact mechanics of graded coatings, International Journal of Solids and Structures, 49, 6, 929–945, 2012.
  • 36. S. Krenk, On the use of the interpolation polynomial for solutions of singular integraf equations, Quarterly of Applied Mathematics, 32, 4, 479–484, 1975.
  • 37. W.K. Binienda, M.J. Pindera, Frictionless contact of layered metal-matrix and poly er-matrix composite half planes, Composites Science and Technology, 50, 1, 119–128, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32e7ca77-9242-4e71-b6a0-67baa8014f99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.