PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition of SnO2 as a functional layer on a porous silicon substrate for potential tandem solar cell application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of a SnO₂ layer deposition, selected for its properties to function as either a recombination layer or an electron transporting material (ETM) layer in a potential silicon/perovskite tandem solar cell. The layer was deposited using an atomic layer deposition (ALD) method to ensure uniform coverage on the rough surface of etched silicon nanowires. The deposition process was monitored using test samples on glass by assessing surface roughness with an atomic force microscopy method and a total transmission through UV-VIS spectroscopy. The test layers were further characterised to estimate thickness using ellipsometry. The target layers, deposited on the porous surface of etched silicon nanowires, were examined using high-resolution scanning electron micro-scopy and transmission electron microscopy to evaluate the material microstructure, layer adhesion to the substrate, and the accuracy of ALD deposition on highly porous structures.
Rocznik
Strony
art. no. e152685
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Krakow, Poland
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland
Bibliografia
  • [1] Di Sabatino, M., Hendawi, R. T. A. & Garcia, A. S. Silicon solar cells: Trends, manufacturing challenges, and AI perspectives. Crystals 14, 167 (2024). https://hdl.handle.net/11250/3153161
  • [2] Fu, F. et al. Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mater. 34, 2106540 (2022). https://doi.org/10.1002/adma.202106540
  • [3] Blakers, A. Development of the PERC solar cell. IEEE J. Photovolt. 9, 629-635 (2019). https://doi.org/10.1109/JPHOTOV.2019.2899460
  • [4] Kafle, B. et al. TOPCon - Technology options for cost efficient industrial manufacturing. Sol. Energy Mater. Sol. Cells 227, 111100 (2021). https://doi.org/10.1016/j.solmat.2021.111100
  • [5] Smith, D. D. et al. Toward the practical limits of silicon solar cells. IEEE J. Photovolt. 4, 1465-1469 (2014). https://doi.org/10.1109/JPHOTOV.2014.2350695
  • [6] Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017). https://doi.org/10.1038/nenergy.2017.32
  • [7] Schäfer, S. & Brendel, R. Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with Lambertian light trapping. IEEE J. Photovolt. 8, 1156 (2018). https://doi.org/10.1109/JPHOTOV.2018.2824024
  • [8] Xu, Q. J. Zhao, Y. & Zhang, X. Light management in monolithic perovskite/silicon tandem solar cells. Sol. RRL 4, 1900206 (2020). https://doi.org/10.1002/solr.201900206
  • [9] Hu, Y., Chen, Y. & Huang, W. Two-terminal perovskites tandem solar cells: Recent advances and perspectives. Sol. RRL 3, 1900080 (2019). https://doi.org/10.1002/solr.201900080
  • [10] Jošt, M, Kegelmann, L. & Albrecht, S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020). https://doi.org/10.1002/aenm.201904102
  • [11] Xie, Y.-M. et al. Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties. J. Energy Chem. 71, 12-19 (2022). https://doi.org/10.1016/j.jechem.2022.03.019
  • [12] Zang, Y. et al. Optical design of monolithic two-terminal perovskite/Si tandem solar cells for efficient photon management. Mater. Today Commun. 38, 108199 (2024). https://doi.org/10.1016/j.mtcomm.2024.108199
  • [13] Zheng, J. et al. Balancing charge-carrier transport and recom-bination for perovskite/TOPCon tandem solar cells with double-textured structures. Adv. Energy Mater. 13, 2203006 (2023). https://doi.org/10.1002/aenm.202203006
  • [14] Mazumdar, S., Zhao, Y. & Zhang, X. Comparative architecture in monolithic perovskite/silicon tandem solar cells. Sci. China: Phys. Mech. Astron. 66, 217304 (2023). https://doi.org/10.1007/s11433-022-1928-8
  • [15] Howlader, A. H. et al. Self-formation of SnCl2 passivation layer on SnO2 electron-transport layer in chloride-iodide-based perovskite solar cell. Adv. Energy Sustain. Res. 5, 2400030 (2024). https://doi.org/10.1002/aesr.202400030
  • [16] Zeng, Q. et al. Hysteresis-free perovskite solar cells with over 24% efficiency enabled by ZnCl2 doped SnO2 electron transfer layer. Appl. Phys. Lett. 124, 033901 (2024). https://doi.org/10.1063/5.0186904
  • [17] McDonald, C. et al. In situ grown nanocrystalline Si recombination junction layers for efficient perovskite-Si monolithic tandem solar cells: Toward a simpler multijunction architecture. ACS Appl. Mater. Interfaces 14, 33505-33514 (2022). https://doi.org/10.1021/acsami.2c05662
  • [18] Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
  • [19] Li, C., Wang, Y. & Choy, C. H. Efficient interconnection in perovskite tandem solar cells. Small Methods 4, 2000093 (2020). https://doi.org/10.1002/smtd.202000093
  • [20] Mariotti, S. et al. Monolithic perovskite/silicon tandem solar cells fabricated using industrial p-type polycrystalline silicon on oxide/passivated emitter and rear cell silicon bottom cell technology. Sol. RRL 6, 2101066 (2022). https://doi.org/10.1002/solr.202101066
  • [21] Kulesza-Matlak, G. et al. Black silicon obtained in two-step short wet etching as a texture for silicon solar cells-surface microstructure and optical properties studies. Arch. Metall. Mater. 63, 1009-1017 (2018). https://doi.org/10.24425/122436
  • [22] Kulesza-Matlak, G. et al. Interlayer microstructure analysis of the transition zone in the silicon/perovskite tandem solar cell. Energies 14, 6819 (2021). https://doi.org/10.3390/en14206819
  • [23] Kulesza-Matlak, G. et al. Morphology of an ITO recombination layer deposited on a silicon wire texture for potential silicon/perovskite tandem solar cell applications. Opto-Electron. Rev. 31, e148222 (2023). https://doi.org/10.24425/opelre.2023.148222
  • [24] Szindler, M. et al. The Al2O3/TiO2 double antireflection coating deposited by ALD method. Opto-Electron. Rev. 30, e141952 (2022). https://doi.org/10.24425/opelre.2022.141952
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. W artykule jest podany zły ORCID Kazimierza Drabczyka - jest: 0000-0003-3350-9383 a powinno być wg Bazy ORCID: 0000-0003-1490-5356.
3. This research was funded by IMMS PAS as a statutory work. The SEM and TEM examinations were performed in the Accredited Testing Laboratories at the IMMS PAS (ILAC-MRA).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32e3ccec-042e-4736-9682-06c7c07f2fde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.