PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania wpływu minerałów hunterytu/hydromagnezytu oraz kalcytu pod kątem niepalności i właściwości mechanicznych kompozytów drzewnych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Investigation of calcite and huntite/hydromagnesite mineral in co-presence regarding flame retardant and mechanical properties of wood composites
Języki publikacji
PL EN
Abstrakty
PL
W pracy zbadano właściwości dodatków mineralnych w kompozytach drzewnych, które wpływają na palność materiału, a jednocześnie są przyjazne dla środowiska. W artykule poddano analizie wyniki pomiarów kompozytów drewnianych, będących naturalnym materiałem budowlanym wielu domów, a także elementów ich wyposażenia. Jako matrycę zastosowano trociny drzewne. W pracy zbadano wpływ współobecności kalcytu i minerału mieszanego huntyt/hydromagnezyt. Kalcyt zastosowano jako minerał pomocniczy oprócz huntytu/hydromagnezytu, w celu uzyskania lepszego środka zmniejszającego palność zgodnie z normą UL94 i właściwości mechanicznych kompozytu drzewnego, takich jak wytrzymałość na zginanie i moduł sprężystości przy zginaniu. Uzyskane wyniki oceniano w zależności od zawartości składników mineralnych w kompozytach. Wyniki wykazały, że próbka 40S/50H/10C jest optymalna pod względem stosunku modułu sprężystości do niepalności. Materiały ognioodporne można stosować w budownictwie, a także w elektrotechnice, np. w gaśnicach akustycznych [np. do budowy falowodu].
EN
This work examines the characteristics of mineral additives in wood composites that affect the fire retardant properties of the material, and at the same time are environmentally friendly. The paper analyzes the results of measurements for wood composites, which is the natural building material of many houses, as well as elements of their furnishings. Sawdust waste was applied as a matrix. In the paper, a co-presence effect of calcite and huntite/hydromagnesite mineral was investigated. The calcite mineral was used as auxiliary minerals in addition to the huntite/hydromagnesite mineral to obtain a better flame retardant according to the UL94 standard and mechanical properties in the wood composite, such as flexural strength and flexural modulus. The results obtained were measured and evaluated depending on the mineral content of the composites. The results indicated that sample 40S/50H/10C is the most optimal in terms of the ratio of the modulus of flexibility and fire retardant characteristics. Fire retardant materials can be used in the construction industry, as well as in the electrical engineering applications, such as for acoustic fire extinguishers [e.g. for waveguide construction].
Czasopismo
Rocznik
Strony
40--53
Opis fizyczny
Bibliogr. 78 poz., il., tab.
Twórcy
  • Department of Material Science and Engineering, Izmir Katip Çelebi Univeristy, İzmir, Turkey
  • Dpto. de Ingeniería Energética, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
  • Department of Civil Security, Lutsk National Technical University, Lutsk, Ukraine
  • Department of Information Systems, Kielce University of Technology, Kielce, Poland
Bibliografia
  • 1. Р. Minias. The effects of urban life on animal immunity: Adaptations and constraints. Sci. Total Environ. 895, 165085 (2023). https://doi.org/10.1016/j.scitotenv.2023.165085
  • 2. F-J. Richard, I. Southern, M. Gigauri, G. Bellini, O. Rojas, A. Runde. Warning on nine pollutants and their effects on avian communities. Global Ecol. Conserv. 32, 01898 (2021). https://doi.org/10.1016/j.gecco.2021.e01898
  • 3. A. Rossatto, M.Z.F. Arlindo, M. Saraiva de Morais, T. Denardi de Souza, C.S. Ogrodowski. Microplastics in aquatic systems: A review of occurrence, monitoring and potential environmental risks. Environ. Adv. 13, 100396 (2023). https://doi.org/10.1016/j.envadv.2023.100396
  • 4. R.S. Raj, K.A. Krishnan. A comprehensive review on the impact of emerging organophosphorous pesticides and their remedial measures: Special focus on acephate. Env. Nanotech. Monit. Manag. 20, 100813 (2023). https://doi.org/10.1016/j.enmm.2023.100813
  • 5. V. Strelets, V. Loboichenko, N. Leonova, R. Shevchenko, V. Telelim, V. Strelets, O. Shevchenko, O. Burmenko. Analysis of the Influence of Anthropogenic Factors of the Urbanized Territory of Poltava Region (Ukraine) on the State of River Water. Ecological Engineering & Environmental Technology. 23(2), 185-192 (2022). https://doi.org/10.12912/27197050/146019
  • 6. A. Kuzyk, V. Karabyn, V. Shuryhin, Y. Sushko, K. Stepova, O. Karabyn. The River System Pollutant Migration in the Context of the Sudden One-Time Discharge with Consideration of the Bottom Sediments Influence (Case of Benzene Migration in the Stryi River, Ukraine). Ecol. Eng. Environ. Techn. 24(1), 46-54 (2023). https://doi.org/10.12912/27197050/154909
  • 7. Y. Hou, Y. Zhao, J. Lu, Q. Wei, L. Zang, X. Zhao. Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines – A global meta-analysis. Environ. Poll. 330, 121803 (2023). https://doi.org/10.1016/j.envpol.2023.121803
  • 8. E.S. Rentier, L.H. Cammeraat. The environmental impacts of river sand mining, Sci. Total Environ. 838(1), 155877 (2022). https://doi.org/10.1016/j.scitotenv.2022.155877
  • 9. Z. Jiang, Y. Gao, H. Cao, W. Diao, W. Yao, C. Yuan, Y. Fan, Y. Chen. Characteristics of ambient air quality and its air quality index (AQI) model in Shanghai, China. Sci. Total Environ. 896, 165284 (2023). https://doi.org/10.1016/j.scitotenv.2023.165284
  • 10. P. Sicard, E. Agathokleous, S.C. Anenberg, A. De Marco, E. Paoletti, V. Calatayud. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 858, 160064 (2023). https://doi.org/10.1016/j.scitotenv.2022.160064
  • 11. M.T. Khan, I.A. Shah, M.F. Hossain, N. Akther, Y. Zhou, M.S. Khan, M. Al-Shaeli, M.S. Bacha, I. Ihsanullah. Personal protective equipment (PPE) disposal during COVID-19: An emerging source of microplastic and microfiber pollution in the environment. Sci. Total Environ. 860, 160322 (2022). https://doi.org/10.1016/j.scitotenv.2022.160322
  • 12. N. Leonova, V. Loboichenko, M. Divizinyuk, R. Shevchenko. Study of Short-Term Effects on the Soil of Disposable Protective Face Masks Used in the COVID-19 Pandemic. Key Eng. Mater. 925, 197-210 (2022). https://doi.org/10.4028/p-zjo35h
  • 13. A. Myroshnychenko, V. Loboichenko, M. Divizinyuk, A. Levterov, N. Rashkevich, O. Shevchenko, R. Shevchenko. Application of Up-to-Date Technologies for Monitoring the State of Surface Water in Populated Areas Affected by Hostilities. Вull. Georgian Nat. Acad. Sci. 3(16), 50-59 (2022).
  • 14. R.I. Shevchenko, V.M. Strelets, V.M. Loboichenko. Review of up-to-date approaches for extinguishing oil and petroleum products. SOCAR Procc. Spec. Iss. 1/2021, 169-174 (2021). https://doi.org/10.5510/OGP2021SI100519
  • 15. O. Sierikova, E. Strelnikova, D. Kriutchenko, V. Gnitko. Reducing Environmental Hazards of Prismatic Storage Tanks under Vibrations. WSEAS Trans. Circ. Syst. 21, 249-257 (2022). https://doi.org/10.37394/23201.2022.21.27
  • 16. G.M. Cabello, S.J. Navas, I.M. Vázquez, A. Iranzo, F.J. Pino. Renewable medium-small projects in Spain: Past and present of microgrid development. Renewable and Sustainable Energy Rev. 165, 112622 (2022). https://doi.org/10.1016/j.rser.2022.112622
  • 17. D. Pan, Y. Wang, Q. Liang, M. Zhou, X. Li, S. Xu, Z. Li. Recent advances in solar-driven photothermal nanostructured materials for CO2 reduction: A review. J. Environ. Chem. Eng. 4(11), 110324 (2023). https://doi.org/10.1016/j.jece.2023.110324
  • 18. Y. Kozak, Y. Abramov, O. Basmanov. Substantiating the Pulse Method for Determining the Time Parameter of Fire Detectors with a Thermoresistive Sensing Element. Eastern-Eur. J. Enter. Techn. 5(6), 49-55 (2021). https://doi.org/10.15587/1729-4061.2021.244235
  • 19. J.L. Wilk-Jakubowski, P. Stawczyk, S. Ivanov, S. Stankov. Control of Acoustic Extinguisher with Deep Neural Networks for Fire Detection. Elektronika i Elektrotechnika. 28(1), 52-59 (2022). https://doi.org/10.5755/j02.eie.24744
  • 20. L.-Y. Li, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao, K. Cao, P. Song, L.-C. Tang. Smart fire-warning materials and sensors: Design principle, performances, and applications. Mater. Sci. Eng. R 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
  • 21. J.L. Wilk-Jakubowski, V. Loboichenko, G. Wilk-Jakubowski, H. Yılmaz-Atay, R. Harabin, J. Ciosmak, S. Ivanov, S. Stankov. Acoustic firefighting method on the basis of European research: a review. Akustika. 46(46), 31-45 (2023). https://doi.org/10.36336/akustika20234631
  • 22. J. Wilk-Jakubowski. Analysis of Flame Suppression Capabilities Using Low-Frequency Acoustic Waves and Frequency Sweeping Techniques. Symmetry. 13(7), 1299 (2021). https://doi.org/10.3390/sym13071299
  • 23. P. Stawczyk, J. Wilk-Jakubowski. Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher. Open Eng. 11(1), 349-355 (2021). https://doi.org/10.1515/eng-2021-0037
  • 24. S. Ivanov, S. Stankov, J. Wilk-Jakubowski, P. Stawczyk. The using of Deep Neural Networks and acoustic waves modulated by triangular waveform for extinguishing fires. International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2020). 216, 207-218 (2021). https://doi.org/10.1007/978-981-33-4676-5_16
  • 25. J. Wilk-Jakubowski, P. Stawczyk, S. Ivanov, S. Stankov. The using of Deep Neural Networks and natural mechanisms of acoustic waves propagation for extinguishing flames. Int. J. Comp. Vision Rob. 12(2), 101-119 (2022). https://doi.org/10.1504/IJCVR.2021.10037050
  • 26. J. Wilk-Jakubowski, P. Stawczyk, S. Ivanov, S. Stankov. High-power acoustic fire extinguisher with artificial intelligence platform. Int. J. Comp. Vision Rob. 12(3), 236-249 (2022). https://doi.org/10.1504/IJCVR.2021.10039861
  • 27. S.C.E. Leung, P. Shukla, D. Chen, E. Eftekhari, H. An, F. Zare, N. Ghasemi, D. Zhang, N.T. Nguyen, Q. Li. Emerging technologies for PFOS/PFOA degradation and removal: A review. Sci. Total Environ. 827, 153669 (2022). https://doi.org/10.1016/j.scitotenv.2022.153669
  • 28. V.V. Strelets, V.M. Loboichenko, N.A. Leonova, R.I. Shevchenko, V.M. Strelets, A.V. Pruskyi, O.V. Avramenko. Comparative assessment of environmental parameters of foaming agents based on synthetic hydrocarbon used for extinguishing the fires of oil and petroleum products. SOCAR Proceedings. Special Issue 2/2021, 1-10 (2021).
  • 29. I.A. Farbun, I.A. Kovalchuk, T.A. Khalyavka, M.M. Tsyba, S.V. Camyshan. Organic Pollutants Removal from Wastewater in Rubizhne City, Ukraine. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, European Association of Geoscientists & Engineer. 1(2022), 1-5 (2022).
  • 30. O. Azarenko, Y. Honcharenko, M. Divizinyuk, V. Mirnenko, V. Strilets, J.L. Wilk-Jakubowski. The influence of air environment properties on the solution of applied problems of capturing speech information in the open terrain. Soc. Dev. Secur. 12(2), 64-77 (2022). https://doi.org/10.33445/sds.2022.12.2.6
  • 31. O. Azarenko, Y. Honcharenko, M. Divizinyuk, V. Mirnenko, V. Strilets, J.L. Wilk-Jakubowski. Influence of anthropogenic factors on the solution of applied problems of recording language information in the open area. Soc. Dev. Secur. 12(3), 135-143 (2022). https://doi.org/10.33445/sds.2022.12.3.12
  • 32. G. Wilk-Jakubowski, R. Harabin, S. Ivanov. Robotics in crisis management: a review. Techn. Soc. 68, 101935 (2022). https://doi.org/10.1016/j.techsoc.2022.101935
  • 33. G. Wilk-Jakubowski, R. Harabin, T. Skoczek, J. Wilk-Jakubowski. Preparation of the Police in the Field of Counter-terrorism in Opinions of the Independent Counter-terrorist Sub-division of the Regional Police Headquarters in Cracow. Slovak J. Polit. Sci. 22(2), 174-208 (2022).
  • 34. ISO 3941:2007. Classification of fires. ISO. International Organization for Standardization, Geneva, Switzerland, 2007.
  • 35. NFPA 10: Standard for portable fire extinguishers. National Fire Protection Association, Massachusetts, USA, 2022. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=10
  • 36. Guidance notes on fire-fighting systems. American Bureau of Shipping. Houston, USA, 2005.
  • 37. V.V. Syrovyi, Y.M. Senchikhin, A.A. Lisnyak, I.G. Derevyanko. Basics of firefighting tactics: train, manual. NUCD, Kharkiv, Ukraine, 2015 (in Ukr).
  • 38. V. Loboichenko, N. Leonova, V. Strelets, A. Morozov, R. Shevchenko, P. Kovalov, R. Ponomarenko, T. Kovalova. Comparative analysis of the influence of various dry powder fire extinguishing compositions on the aquatic environment. Water Ener. Int. 62(7), 63-68 (2019).
  • 39. Y. Sheng, S. Zhang, D. Hu, L. Ma, Y. Li. Investigation on thermal stability of highly stable fluorine-free foam co-stabilized by silica nanoparticles and multi-component surfactants. J. Mol. Liq. 382, 122039 (2023). https://doi.org/10.1016/j.molliq.2023.122039
  • 40. K.M. Hinnant, S.L. Giles, R. Ananth, J.H. Miller. Exploring synergistic fire suppression of siloxane-glycoside firefighting foam using sulfonated hydrotrope additives to alter surfactant aggregation in solution. Coll. Surf. A 655, 130219-130219 (2022). https://doi.org/10.1016/j.colsurfa.2022.130219
  • 41. A. Rabajczyk, M. Zielecka, T. Popielarczyk, T. Sowa. Nanotechnology in Fire Protection-Appl. Req. Mater. 14(24), 7849 (2021). https://doi.org/10.3390/ma14247849
  • 42. Q. Wang, Y. Zhang, Y. Li, Y. Pan, X. Geng, X. Zhu, J. Jiang. Study on the effect of nanoparticles combined with silicone surfactant and cationic surfactant on foam and fire extinguishing performance. Env. Sci. Poll. Res. 30(4), 11065-11080 (2023). https://doi.org/10.1007/s11356-022-22969-y
  • 43. C. Xiong, Y. Liu, C. Xu, X. Huang. Extinguishing the dripping flame by acoustic wave. Fire Saf. J. 120, 103109 (2021). https://doi.org/10.1016/j.firesaf.2020.103109
  • 44. T.S. Vovchuk, J.L. Wilk-Jakubowski, V.M. Telelim, V.M. Loboichenko, R.I. Shevchenko, O.S. Shevchenko, N.Y. Tregub. Investigation of the use of the acoustic effect in extinguishing fires of oil and petroleum products. SOCAR Proceedings. Spec. Iss. 2/2021, 24-31 (2021). https://doi.org/10.5510/OGP2021SI200602
  • 45. V. Loboichenko, J. Wilk-Jakubowski, G. Wilk-Jakubowski, R. Harabin, R. Shevchenko, V. Strelets, A. Levterov, A. Soshinskiy, N. Tregub, O. Antoshkin. The use of acoustic effects for the prevention and elimination of fires as an element of modern environmental technologies. Environ. Clim. Techn. 26(1), 319-330 (2022). https://doi.org/10.2478/rtuect-2022-0024
  • 46. H. Yılmaz-Atay, J.L. Wilk-Jakubowski. A Review of Environmentally Friendly Approaches in Fire Extinguishing: From Chemical Sciences to Innovations in Electrical Engineering. Polymers. 14(6), 1224 (2022). https://doi.org/10.3390/polym14061224
  • 47. O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon, F.M. Emen. Formation of Fire Retardant Properties in Elastic Silica Coatings for Textile Materials. Mater. Sci. For. 1006, 25-31 (2020). https://doi.org/10.4028/www.scientific.net/msf.1006.25
  • 48. M.S. Özer, S. Gaan. Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Prog. Org. Coat. 171, 107027 (2022). https://doi.org/10.1016/j.porgcoat.2022.107027
  • 49. A. Kovalov, Y. Otrosh, O. Semkiv, V. Konoval, O. Chernenko. Influence of the Fire Temperature Regime on the Fire-Retardant Ability of Reinforced-Concrete Floors Coating. Mater. Sci. For. 1006, 87-92 (2020). https://doi.org/10.4028/www.scientific.net/msf.1006.87
  • 50. O. Wen, M.Z. Mohd Tohir, T. Yeaw, M. Abdul Razak, H.S. Zainuddin, M.R. Abdul Hamid. Fire-resistant and flame-retardant surface finishing of polymers and textiles: A state-of-the-art review. Prog. Org. Coat. 175, 107330 (2023). https://doi.org/10.1016/j.porgcoat.2022.107330
  • 51. S. Liodakis, V. Tsapara, I.P. Agiovlasitis, D. Vorisis. Thermal analysis of Pinus sylvestris L. wood samples treated with a new gel-mineral mixture of short- and long-term fire retardants. Thermoch. Acta. 568, 156-160 (2013). https://doi.org/10.1016/j.tca.2013.06.011
  • 52. L. Zhang, Xu J., Shen H., J. Xu, J. Cao. Montmorillonite-catalyzed furfurylated wood for flame retardancy. Fire Saf. J. 121, 103297 (2021). https://doi.org/10.1016/j.firesaf.2021.103297
  • 53. A. Singh, D. Ramimoghadam, A. Mirabedini. The use of polydopamine coatings for timber protection against the fire: A critical review and feasibility analysis. Prog. Org. Coat. 175, 107359-107359 (2023). https://doi.org/10.1016/j.porgcoat.2022.107359
  • 54. F.-F. Li. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques. Molecules. 28, 1842 (2023). https://doi.org/10.3390/molecules28041842
  • 55. J. Wilk-Jakubowski. Total Signal Degradation of Polish 26-50 GHz Satellite Systems Due to Rain. Polish J. Environ. Stud. 27(1), 397-402 (2018). https://doi.org/10.15244/pjoes/75179
  • 56. J. Wilk-Jakubowski. Predicting Satellite System Signal Degradation due to Rain in the Frequency Range of 1 to 25 GHz. Polish J. Environ. Stud. 27(1), 391-396 (2018). https://doi.org/10.15244/pjoes/73906
  • 57. J. Wilk-Jakubowski. Measuring Rain Rates Exceeding the Polish Average by 0.01%. Polish J. Environ. Stud. 27(1), 383-390 (2018). https://doi.org/10.15244/pjoes/73907
  • 58. M. Zhang, D. Wang, T. Li, J. Jiang, H. Bai, S. Wang, Y. Wang, W. Dong. Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Biomacromolecules. 24(2), 957-966 (2023). https://doi.org/10.1021/acs.biomac.2c01397
  • 59. M. Nurul Azman, M. Taib, P. Antov, V. Savov, W. Fatriasari, E.W.Madyaratri, R. Wirawan, L. Makovická Osvaldová, L. Seng Hua, M.A. Abdul Ghani, S.S. Azry Osman Al Edrus, L. Wei Chen, D. Trache, M.H. Hussin. Current progress of biopolymer-based flame retardant. Polym. Degrad. Stab. 205, 110153 (2022). https://doi.org/10.1016/j.polymdegradstab.2022.110153
  • 60. A. Hochół, M. Flejszar, P. Chmielarz. Advances and opportunities in synthesis of flame retardant polymers via reversible deactivation radical polymerization. Polym. Degrad. Stab. 214, 110414 (2023). https://doi.org/10.1016/j.polymdegradstab.2023.110414
  • 61. K. Sykam, S.S. Hussain, S. Sivanandan, R. Narayan, P. Basak. Non-halogenated UV-curable flame retardants for wood coating applications: Review. Prog. Org. Coat. 179, 107549 (2023). https://doi.org/10.1016/j.porgcoat.2023.107549
  • 62. Y. Yan, S. Dong, H. Jiang, B. Hou, Z. Wang, C. Jin. Efficient and Durable Flame-Retardant Coatings on Wood Fabricated by Chitosan, Graphene Oxide, and Ammonium Polyphosphate Ternary Complexes via a Layer-by-Layer Self-Assembly Approach. ACS Omega. 7(33), 29369-29379 (2022). https://doi.org/10.1021/acsomega.2c03624
  • 63. N.A. Rejab, J. Olabode Akindoyo, H. Yilmaz Atay, J. Selvi Binoj, M. Jaafar. Flexural and flame retardance properties of multi-walled carbon nanotubes/glass fibre/epoxy hybrid composites. Constr. Build. Mater. 387, 131677 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131677
  • 64. T.R. Hull, A. Witkowski, L. Hollingbery. Fire retardant action of mineral fillers. Polym. Degrad. Stab. 96(8), 1462-1469 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.05.006
  • 65. J. Wilk-Jakubowski. Experimental Investigation of Amplitude-Modulated Waves for Flame Extinguishing: A Case of Acoustic Environmentally Friendly Technology. Environ. Clim. Techn. 27(1), 627-638 (2023). https://doi.org/10.2478/rtuect-2023-0046
  • 66. L.A. Hollingbery, T.R. Hull. The fire retardant behaviour of huntite and hydromagnesite – A review. Polym. Degrad. Stab. 95(12), 2213-2225 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.08.019
  • 67. L.A. Hollingbery, T.R. Hull. The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polym. Degrad. Stab. 97(4), 504-512 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.01.024
  • 68. L.A. Savas, T.K. Deniz, U. Tayfun, M. Dogan. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite & hydromagnesite mineral. Polym. Degrad. Stab. 135, 121-129 (2017). https://doi.org/10.1016/j.polymdegradstab.2016.12.001
  • 69. A. Erdem, M. Dogan. Influence of boron bearing fillers on flame retardancy properties of huntite hydromagnesite filled ductile PLA biocomposites. J. Boron 8(1), 16-24 (2023). https://doi.org/10.30728/boron.1135702
  • 70. H. Yilmaz Atay, Ö. İçin, B. Kuru. Investigations of Flame Retardant Properties of Zinc Borate Accompanying with Huntite and Hydromagnesite in Polymer Composites. Inżynieria Mineralna. 1(1), 79-86 (2020). https://doi.org/10.29227/IM-2020-01-13
  • 71. H. Yilmaz Atay. Novel eco-friendly flame retardant wood composites reinforced by huntite and hydromagnesite minerals. Wood Mater. Sci. Eng. 17(6), 648-658 (2022). https://doi.org/10.1080/17480272.2021.1923567
  • 72. L. Haurie, A.I. Fernández, J.I. Velasco, J.M. Chimenos, J.M. Cuesta, F. Espiell. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polym. Degrad. Stab. 92(6), 082-7 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.02.014
  • 73. H. Yilmaz Atay, Utilising glass fibres to improve mechanical properties of mineral reinforced cable trays. Ömer Halisdemir Üniversitesi Fen Bilimleri Dergisi. 6(1), 265-274 (2017).
  • 74. K.S. Andrikopoulos, G. Bounos, G.C. Lainioti, T. Ioannides, J.K. Kallitsis, G.A. Voyiatzis. Flame Retardant Nano-Structured Fillers from Huntite/Hydromagnesite Minerals. Nanomaterials. 12(14), 2433 (2022). https://doi.org/10.3390/nano12142433
  • 75. O. Kangal, O. Kökkılıç, F. Burat. Production of huntite and hydromagnesite with flame retardant featured by flotation. Min. Metal. Expl. 26(2), 109-113 (2009). https://doi.org/10.1007/bf03403427
  • 76. H. Yilmaz Atay, M. Çirak. Separation of huntite and hydromagnesite from magnesite in combination of physicochemical treatment and size reduction. Ain Shams Eng. J. 10(1), 113-119 (2019). https://doi.org/10.1016/j.asej.2018.05.003
  • 77. UL 94. Tests for Flammability of Plastic Materials for Parts in Devices and Appliances. UL Standard. Ed.6, 2013.
  • 78. IEC 60695-11-5:2016. Fire hazard testing - Part 11-5: Test flames – Needle-flame test method – Apparatus, confirmatory test arrangement and guidance. International Standard, 2016
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32e338ee-d508-46b9-83fe-09ef40cf8796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.