Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The corrosion behaviour of a thermo-mechanically treated Beta C titanium alloy in a 3.5 wt% NaCl solution was investigated in this study. Thermomechanical processing prejudges titanium alloys to improve corrosion properties. Scanning electron microscopy and electron-backscattered diffractions were used to investigate the microstructural evolution and grain orientation after thermo-mechanical processing. The electrochemical characteristics of Beta C titanium alloy were examined using electrochemical impedance spectroscopy (EIS), corrosion potential, and corrosion current density measurements. The 45 percent deformed specimen experiences significant plastic deformation with increased dislocation density, resulting in strong ND //<111> orientation. However, the annealing after deformation exhibits a strong g-fiber texture with the lowest in-grain misorientation, which contributes to improving the corrosion resistance of the titanium alloy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
571--577
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab.
Twórcy
autor
- Defence Institute of Advanced Technology, Department of Metallurgical and Materials Engineering, Pune, Maharashtra, India
autor
- VIT-AP University, School of Mechanical Engineering, Amaravati, Andhra Pradesh, India
autor
- Defence Institute of Advanced Technology, Department of Metallurgical and Materials Engineering, Pune, Maharashtra, India
Bibliografia
- [1] J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate. Acta Mater. 152, 301-314 (2018). DOI: https://doi.org/10.1016/j.actamat.2018.04.035
- [2] Y. Li, J. Xu, Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? Electrochim. Acta. 233, 151-166 (2017). DOI: https://doi.org/10.1016/j.electacta.2017.03.015
- [3] Y. Yang, P. Castany, M. Cornen, I. Thibon, F. Prima, T. Gloriant, Texture investigation of the superelastic Ti-24Nb-4Zr-8Sn alloy. J. Alloys Compd. 591, 85-90(2014). DOI: https://doi.org/10.1016/j.jallcom.2013.12.207
- [4] J. Li, Y. Bai, Z. Fan, S. Li, Y. Hao, R. Yang, Y. Gao, Effect of fluoride on the corrosion behavior of nanostructured Ti-24Nb-4Zr-8Sn alloy in acidulated artificial saliva, J. Mater. Sci. Technol. 34, 1660-1670 (2018). DOI: https://doi.org/10.1016/j.jmst.2018.01.008
- [5] C. Lan, Y. Wu, L. Guo, F. Chen, Effects of cold rolling on microstructure, texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications. Mater. Sci. Eng. A. 690, 170-176 (2017). DOI: https://doi.org/10.1016/j.msea.2017.02.045
- [6] I. Çaha, A.C. Alves, P.A.B. Kuroda, C.R. Grandini, A.M.P. Pinto, L.A. Rocha, F. Toptan, Degradation behavior of Ti-Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina, Corros. Sci. 167, 108488 (2020). DOI: https://doi.org/10.1016/j.corsci.2020.108488
- [7] R.A. Antunes, C.A.F. Salvador, M.C.L. de Oliveira, M.C.L. de Oliveiraa, C.A.F. Salvador, Materials selection of optimized titanium alloys for aircraft applications. Mater. Res. 21 (2018). DOI: https://doi.org/10.1590/1980-5373-mr-2017-0979
- [8] J. Pang, D.J. Blackwood, Corrosion of titanium alloys in high temperature near anaerobic seawater, Corros. Sci. 105, 17-24. (2016). DOI: https://doi.org/10.1016/j.corsci.2015.12.011
- [9] J. Krawczyk, Ł. Frocisz, R. Dąbrowski, E. Rozniata, T. Śleboda, The range of the occurrence of α phase in near β titanium alloys. Key Eng. Mater. 682, 77-82. (2016). DOI: https://doi.org/10.4028/www.scientific.net/kem.682.77
- [10] U. Nichul, R. Khatirkar, A. Dhole, V. Hiwarkar, Cold compression behavior on the evolution of microstructure and texture in Beta C titanium alloy. J. Alloys Compd. 887, 161400 (2021). DOI: https://doi.org/10.1016/j.jallcom.2021.161400
- [11] N.P. Gurao, G. Manivasagam, P. Govindaraj, R. Asokamani, S. Suwas, Effect of Texture and Grain Size on Bio-Corrosion Response of Ultrafine-Grained Titanium. Metall. Mater. Trans. A. 44 (2013) 5602-5610. DOI: https://doi.org/10.1007/s11661-013-1910-9
- [12] U. Nichul, V. Hiwarkar, Carbon dot complimentary green corrosion inhibitor for crystallographically textured Beta C titanium alloy for marine application : A state of art. J. Alloys Compd. 962, 171116 (2023). DOI: https://doi.org/10.1016/j.jallcom.2023.171116
- [13] J. Lu, W. Zhang, W. Huo, Y. Zhao, W. Cui, Y. Zhang, Electrochemical corrosion behavior and mechanical properties of nanocrystalline Ti-6Al-4V alloy induced by sliding friction treatment. Materials (Basel). 12 (2019). DOI: https://doi.org/10.3390/ma12050760.
- [14] J. Jin, S. Zhou, W. Zhang, K. Li, Y. Liu, D. Chen, L.-C. Zhang, Effect of ceramic types on the microstructure and corrosion behavior of titanium matrix composites produced by selective laser melting. J. Alloys Compd. 918, 165704 (2022). DOI: https://doi.org/10.1016/j.jallcom.2022.165704
- [15] X. Yang, X. Dong, W. Li, W. Feng, Y. Xu, Effect of solution and aging treatments on corrosion performance of laser solid formed Ti-6Al-4V alloy in a 3.5 wt.% NaCl solution. J. Mater. Res. Technol. 9, 1559-1568 (2020). DOI: https://doi.org/10.1016/j.jmrt.2019.11.082
- [16] H.S. Abdo, E.S.M. Sherif, H.A. El-Serehy, Manufacturing of Ti-6%Al and Ti-6%Al-4%v alloys and their corrosion in sodium chloride solutions. Crystals. 10, 9-11 (2020). DOI: https://doi.org/10.3390/cryst10030181
- [17] S. Gudić, L. Vrsalović, D. Kvrgić, A. Nagode, Electrochemical behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution. Materials (basel). 14, 7495 (2021). DOI: https://doi.org/10.3390/ma14247495
- [18] J. Jaquez-Muñoz, C. Gaona-Tiburcio, A. Lira-Martinez, P. Zambrano-Robledo, E. Maldonado-Bandala, O. Samaniego-Gamez, D. Nieves-Mendoza, J. Olguin-Coca, F. Estupiñan-Lopez, F. Almeraya-Calderon, Susceptibility to Pitting Corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V Alloys for Aeronautical Applications. Metals (Basel). 11, 1002 (2021). DOI: https://doi.org/10.3390/met11071002
- [19] R.N. Elshaer, K.M. Ibrahim, Study of Microstructure, Mechanical Properties, and Corrosion Behavior of As-Cast Ni-Ti and Ti-6Al-4V Alloys. J. Mater. Eng. Perform. 32, 7831-7845 (2022). DOI: https://doi.org/10.1007/s11665-022-07654-y
- [20] R. Li, L. Liu, Y. Cui, R. Liu, F. Wang, Corrosion behavior of pure Ti under continuous NaCl solution spraying at 600°C. Npj Mater. Degrad. 6, 53 (2022). DOI: https://doi.org/10.1038/s41529-022-00257-x
- [21] J. Affi, Gunawarman, Y. Yetri, H. Fajri, D. Juliadmi, N.F. Nuswantoro, Nurbaiti, S. Fonna, D.H. Tjong, M. Manjas, Corrosion Resistance of β type titanium (TNTZ) in 3% NaCl solution. IOP Conf. Ser. Mater. Sci. Eng. 602 (2019). DOI: https://doi.org/10.1088/1757-899X/602/1/012070
- [22] C. Madikizela, L.A. Cornish, L.H. Chown, H. Möller, Microstructure and mechanical properties of selective laser melted Ti-3Al-8V-6Cr-4Zr-4Mo compared to Ti-6Al-4V. Mater. Sci. Eng. A. 747, 225-231 (2019). DOI: https://doi.org/10.1016/j.msea.2018.12.100
- [23] G. Yang, L. Ying, L. Haichao, Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl. Corros. Sci. 43, 397-411 (2001). DOI: https://doi.org/10.1016/s0010-938X(00)00090-1
- [24] J.-M. Meyer, Corrosion resistance of nickel-chromium dental casting alloys. Corros. Sci. 17, 971-982 (1977). DOI: https://doi.org/10.1016/s0010-938X(77)80012-7
- [25] O. Muránsky, L. Balogh, M. Tran, C.J. Hamelin, J.S. Park, M.R. Daymond, On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques. Acta Mater. 175, 297-313 (2019). DOI: https://doi.org/10.1016/j.actamat.2019.05.036
- [26] A.L. Etter, M.H. Mathon, T. Baudin, V. Branger, R. Penelle, Influence of the cold rolled reduction on the stored energy and the recrystallization texture in a Fe-53% Ni alloy. Scr. Mater. (2002). DOI: https://doi.org/10.1016/s1359-6462(01)01245-3
- [27] C. Deng, S.F. Liu, X.B. Hao, J.L. Ji, Z.Q. Zhang, Q. Liu, Orientation dependence of stored energy release and microstructure evolution in cold rolled tantalum. Int. J. Refract. Met. Hard Mater. 46, 24-29 (2014). DOI: https://doi.org/10.1016/j.ijrmhm.2014.05.005
- [28] A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha, S. Mishra, Recrystallization behavior of a cold rolled Ti-15V-3Sn-3Cr-3Al alloy. J. Mater. Res. 34, 3082-3092 (2019). DOI: https://doi.org/10.1557/jmr.2019.225
- [29] R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, R.M. Souto, Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution. Electrochim. Acta. 137, 280-289 (2014). DOI: https://doi.org/10.1016/j.electacta.2014.06.021
- [30] I. Milošev, G. Žerjav, J.M. Calderon Moreno, M. Popa, Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy. Electrochim. Acta. 99, 176-189 (2013). DOI: https://doi.org/10.1016/j.electacta.2013.03.086
- [31] U. Nichul, V. Kumar, V. Hiwarkar, Electrochemical performance of heat-treated beta titanium alloy in artificial saliva: Key role of grain size. Mater. Today Commun. 37, 106981 (2023). DOI: https://doi.org/10.1016/j.mtcomm.2023.106981
Uwagi
Authors would like to acknowledge the OIM Laboratory, IIT Bombay for their technical support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32e32d3c-96c7-45e0-bb9e-bbe877552f58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.