PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluidic generator of microbubbles : oscillator with gas flow reversal for a part of period

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Paper presents a fluidic device developed for generation of small (less than 1 mm in diameter) microbubbles in a liquid from gas passing gas through small passages. Until now the bubbles are larger than the size of aerator passage exits so that making the passages smaller did not result in obtaining the desirable microbubbles. Analysis of high-speed camera images (obtained with a special lens of large working distance) have shown show that the large bubble size is caused by slow ascent motion of very small bubbles so that they get into mutual contact and grow by conjunction. The solution is to pulsate the supplied gas flow by a no-moving-part fluidic oscillator. The gener-ated small bubble is moved back into the aerator passage where it is for a part of oscillation period protected from the conjunction with other, previously generated microbubbles.
Rocznik
Strony
195--203
Opis fizyczny
Bibliogr. 58 poz., rys., wykr.
Twórcy
autor
  • Institute of Thermomechanics v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 1402/5, 182 00 Praha 8, Czech Republic
Bibliografia
  • 1. Allouch A., Bourmine K., Monmayrant A., Gauthier-Lafaye o., Geoffroy S., Guo A.-M., Joseph P. (2014), Microbubbles for optofluidics: controlled defects in bubble crystals, Microfluidics and Nanofluidics, 549-560.
  • 2. Al-Mashhadani M.K.H., Wilkinson S.J., Zimmerman W.B. (2015), Airlift bioreactor for biological applications with microbubble mediated transport processes, Chemical Engineering Science, Vol. 137, 243- 253.
  • 3. Al-Mashhadani M.K.H., Bandulasena H.C.H., Zimmerman W.B. (2012), CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation, Industrial and Engineering Chemistry Research, Vol. 51, 1864-1877.
  • 4. Bogdevich V.G., Evseev A.R,., Mljuga A.G., Migirenko G. S. (1978), Gas saturation effect on near-wall turbulence characteristics, Proc of 2nd International Conference on Drag Reduction, Cambridge, BHRA, 25-34.
  • 5. Coward T., Lee J. G. M., Caldwell G.S. (2015), The effect of bubble size on the efficiency and economics of harvesting microalgae by foam flotation, Journal of Applied Phycology, Vol. 27, 733-742.
  • 6. Demirbas A., Demirbas M.F. (2011) Importance of algae oil as a source of biodiesel, Energy Conversion and Management, Vol. 52, 163-170.
  • 7. Hanotu J., Bandulasena H.C.H., Zimmerman W.B. (2012), Microflotation performance for algal separation, Biotechnology and Bioengineering, Vol. 109, 1663-1673.
  • 8. Hanotu J., Bandulasena H.C.H., Chiu T. Y., Zimmerman W.B. t(2013), Oil emulsion separation with fluidic oscillator generated microbubbles, International Journal of Multiphase Flow, Vol. 56, 119- l125.
  • 9. Hashimoto M., Mayers B., Garstecki P., Whitesides G. M. (2006), Flowing lattices of bubbles as tunable, self-assembled diffracting gratings, Small, Vol. 2, 1292-1298
  • 10. Hu X., Liu B., Zhou J., Jin R. Qiao S., Liu G. (2015), CO2 fixation, lipid production, and power generation by a novel air-lift-type microbial carbon capture cell system, Environmental Science and Technology, Vol. 49, 10710-10717.
  • 11. James A., Vukasinovic B., Smith M. K.,Glezer A, (2003), Vibration-induced drop atomization and bursting, Journal of Fluid Mechanics, Vol. 476, 1-28.
  • 12. Jones S.M.J., Harrison S.T.L. (2014), Aeration energy requirements for lipid production by Scenedesmus sp. in airlift bioreactors, Algal Research, Vol. 5, 249-257.
  • 13. Kanagawa T. (2013), Focused ultrasound propagation in water containing many therapeutical microbubbles, Paper OS6-04-4, Proc. of FLUCOME 2013, 12th Intern. Conf., Nara, Japan
  • 14. Kargbo D.M. (2010), Biodiesel production from municipal sewage sludges, Energy and Fuels, Vol. 24, 2791-2797.
  • 15. Kooiman K., Foppen-Harteveld M., Der Steen A.F.W.V., De Jong N.(2011), Sonoporation of endothelial cells by vibrating targeted microbubbles, Journal of Controlled Release, Vol. 154, 35-41..
  • 16. Kuznetsova L.A., Coakley W.T. (2007), Applications of ultrasound streaming and radiation force in biosensors, Biosensors and Bioelectronics, Vol. 22, 1567-1572.
  • 17. Lam M.K., Lee K.T, (2012) Microalgae biofuels: a critical review of issues, problems and the way forward, Biotechnology Advances, Vol. 30, 673-678.
  • 18. Lee J.H., Lee K. H., Won J. M., Rhee K., Chung S. K. (2012), Mobile oscillating bubble actuated by AC-electrowetting-on-dielectric for microfluidic mixing enhancement , Sensors and Actuators A: Physical, Vol. 182, 153-162.
  • 19. Leite G.B., Abdelaziz A.E., Hallenbeck P.C. (2013), Algal biofuels: challenges and opportunities, Bioresource Technology, Vol. 145, 134-139.
  • 20. Madavan N.K., Deutsch S., Merkle C. L. (1984), Reduction of turbulent skin friction by microbubbles, Physics of Fluids, Vol.27, 356-363.
  • 21. McCormick M.E, Bhattacharyya R. (1973), Drag reduction of a submersible hull by electrolysis, Naval Engineers Journal, Vol. 85, 2973-2978.
  • 22. Moriguchi Y., Kato H. (2002), Influence of microbubble diameter and distribution on frictional resistance reduction, Journal of Marine Science and Technology, Vol. 7, 79-85.
  • 23. Oh J.S., Kwon Y. S., Lee K. H., Jeong W., Chung S. K., Rhee K. (2014), Drug perfusion enhancement in tissue model by steady streaming induced by oscillating micro-bubbles, Computers in Biology and Medicine, Vol. 44, 37-43
  • 24. Pang M.J., Wei J.J., Yu B. (2014), Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel, Ocean Engineering, Vol. 81, 58-64.
  • 25. Prevenslik T. (2011), Stability of nanobubbles by quantum mechanics, Proceedings of conference ‘Topical Problem of Fluid Mechanics’, Prague, 113-116.
  • 26. Rawat I., Ranjith Kumar R., Mutanda T., Bux F. (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Applied Energy, Vol. 88, 3411-3424.
  • 27. Rehman F., Medley G. J. D., Bandulasena H.C.H., Zimmerman W. B. (2015) Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants, Environmental Research, Vol.137, 32- 39.
  • 28. Rodríguez-Rodríguez J., Sevilla A., Martinez-Bazán C., Gordillo J. M. (2015), Generation of microbubbles with applications to industry and medicine, Annular Review of Fluid Mechanics, 405-429.
  • 29. Shams M.M., Dong M., Mahinpey N. (2014), Friction factor of microbubbles in capillary tubes at low Reynolds numbers, Chemical Engineering Science, Vol.112, 72-77.
  • 30. Sun R.R., Noble M. L., Sun S. S., Song S., Miao C. H. (2014), Development of therapeutic microbubbles for enhancing ultrasoundmediated gene delivery, Journal of Controlled Release, Vol. 182, 111-120.
  • 31. Terasaka K., Hirabayashi A., Nishino T., Fujioka S., Kobayashi D. (2011), Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chemical Engineering Science, Vol. 66, 3172-3179.
  • 32. Tesař V., Tippetts J. R., Allen R. W. K., Low Y.-Y. (2005), Subdynamic asymptotic behavior of microfluidic valves, Journal of Microelectromechanical Systems, Vol. 14, 335-347.
  • 33. Tesař V. (2007), Configurations of fluidic actuators for generating hybrid-synthetic jet, Sensors and Actuators A: Physical, Vol. 138, 394-403.
  • 34. Tesař V. (2007), Fluidics applied to generating small aeration bubbles, Proc. of 9th Int. Symp. FLUCOME 2007, Tallahassee, FLA USA.
  • 35. Tesař V. (2009) Fluidic control of reactor flow – Pressure drop matching, Chemical Engineering Research and Design, Vol. 87, 817- 832.
  • 36. Tesař V. (2009), Enhancing impinging heat or mass transgfer by fluidically generated flow pulsation, Chemical Engineering Research and Design, Vol. 87, 181-192.
  • 37. Tesař V. (2010), No-moving-part valve for automatic flow switching, Chemical Engineering Journal, Vol. 162, 278-295.
  • 38. Tesař V. (2013), Microbubble smallness limited by conjunctions, Chemical Engineering Journal, Vol. 231, 526-536.
  • 39. Tesař V. (2014), Microbubble generator excited by fluidic oscillators´s third harmonic frequency, Chemical Engineering Research and Design, Vol. 92, 1603-1615.
  • 40. Tesař V. (2014a) New concept: Low-pressure wide-angle atomiser, Chemical Engineering and Processing: Process Intensification, Vol. 82, 19-29.
  • 41. Tesař V. (2014b), Shape oscillation of microbubbles, Chemical Engineering Journal, Vol. 235, 368-378.
  • 42. Tesař V. (2015), Fluidic generator of microbubbles (in Czech), Czech Rep. Patent Application, PV 2015-204 filed March 2015.
  • 43. Tesař V., Hung C.-H., Zimmerman W.B.J. (2006), No-moving-part hybrid-synthetic jet actuator, Sensors and Actuators, A: Physical, Vol. 125, 159-169.
  • 44. Tesař V., Zhong S. (2003), Efficiency of Synthetic Jet Generation, Transactions of the Aeronautical and Astronautical Society of the Republic of China, Zhongguo Hangkong Taikong Xuehui Huikan, Vol. 35, 45-53.
  • 45. Tesař V., Zhong S., Fayaz R. (2013) New fluidic oscillator concept for flow separation control, AIAA Journal, Vol. 51, 397-405
  • 46. Trávníček Z., Tesař V., Kordk J. (2007), Performance of synthetic jet actuators based on hybrid and double-acting principles, Journal of Visualization, Vol.11, 221-l220.
  • 47. Tremblay-Darveau C., Williams R., Burns P.N. (2014), Measuring absolute blood pressure using microbubbles, Ultrasound in Medicine and Biology, Vol. 40, 775-781.
  • 48. Tsuge H., Li P., Shimatani N., Shimamura Y., Nakata H., Ohira M. (2009) Fundamental study on disinfection effect of microbubbles, Kagaku Kogaku Ronbunshu, Vol. 35, 548-552.
  • 49. Wang C., Yalikop S. V., Hilgenfeldt S. (2012), Efficient manipulation of microparticles in bubble streaming flows, Biomicrofluidics, Vol. 6, 012801
  • 50. Watanabe O., Masuko A., Shirose Y. (1998), Measurements of drag reduction by microbubbles using very long ship models, Journal of Soc. Naval Architects, Vol. 183, 53-59.
  • 51. Watanabe Y., Aoi A., Horie S., Tomita N., Mori S., Morikawa H., Matsumura Y., Vassaux G., Kodama T. (2008), Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin, Cancer Science, Vol. 99, 2525-2531.
  • 52. Wataneabe K., (2013), Washing effect of microbubbles, Paper OS1- 01-1, Proc. of FLUCOME 2013, 12th Intern. Conf., Nara, Japan, November 2013
  • 53. Xi X. (2012), Controlled translation and oscillation of microbubbles near a surface in an acoustic standing wave field, PhD Thesis, Mechanical Engineering Department, Imperial College London.
  • 54. Yanuar, Gunawan, Sunaryo, Jamaluddin A. (2012), Micro-bubble drag reduction on a high-speed vessel model, Journal of Marine Science and Technology, Vol. 17, 301-304.
  • 55. Zimmerman W.B., Tesař V., Butler S., Bandulasena H.C.H. (2008), Microbubble generation, Recent Patents in Engineering, Vol. 2, 1-8
  • 56. Zimmerman W.B., Al-Mashhadani M.K.H., Bandulasena H.C.H. (2013) Evaporation dynamics of microbubbles, Chemical Engineering Science, Vol. 101, 865-877.
  • 57. Zimmerman W.B., Zandi M., Bandulasena H.C.H. (2011), Towards energy efficient nanobubble generation with fluidic oscillation, Current Opinion in Colloid & Interface Science, Vol. 16, 350-356.
  • 58. Zimmerman W.B., Zandi M., Bandulasena H.C.H., Tesa5 V., Gilmour J.D., Ying K. (2011), Design of an airlift bioreactor and pilot scale studies with fluidic oscillator induced micro bubbles for growth of a microalgae Dunaliella Salina, Applied Energy, Vol. 88, 3357-3369.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32dd189d-7036-41c6-b398-421c8bd04e4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.