PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sparse data classifier based on first-past-the-post voting system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A point of interest (POI) is a general term for objects that describe places from the real world. The concept of POI matching (i.e., determining whether two sets of attributes represent the same location) is not a trivial challenge due to the large variety of data sources. The representations of POIs may vary depending on the basis of how they are stored. A manual comparison of objects is not achievable in real time; therefore, there are multiple solutions for automatic merging. However, there is no yet the efficient solution solves the missing of the attributes. In this paper, we propose a multi-layered hybrid classifier that is composed of machine-learning and deep-learning techniques and supported by a first-past-the-post voting system. We examined different weights for the constituencies that were taken into consideration during a majority (or supermajority) decision. As a result, we achieved slightly higher accuracy than the best current model (random forest), which also is based on voting.
Wydawca
Czasopismo
Rocznik
Tom
Strony
277--296
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science, Krakow, Poland
Bibliografia
  • [1] Factual Crosswalk API, https://www.factual.com/blog/crosswalk-api/.[accessed: 2021-06-01].
  • [2] Al-Jarrah O.Y., Yoo P.D., Muhaidat S., Karagiannidis G.K., Taha K.: Efficient machine learning for big data: A review, Big Data Research, vol. 2(3), pp. 87–93, 2015.
  • [3] Almeida A., Alves A., Gomes R.: Automatic POI Matching Using an Outlier Detection Based Approach. In: International Symposium on Intelligent Data Analysis, pp. 40–51, Springer, 2018.
  • [4] Bogdanor V.: First-Past-The-Post: An electoral system which is difficult to defend, Representation, vol. 34(2), pp. 80–83, 1997.
  • [5] Breiman L.: Random forests, Machine Learning, vol. 45(1), pp. 5–32, 2001.
  • [6] DBpedia, https://wiki.dbpedia.org/.
  • [7] Gislason P.O., Benediktsson J.A., Sveinsson J.R.: Random forests for land cover classification, Pattern Recognition Letters, vol. 27(4), pp. 294–300, 2006.
  • [8] Grover A., Kapoor A., Horvitz E.: A deep hybrid model for weather forecasting. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 379–386, ACM, 2015.
  • [9] Hochmair H.H., Juh´asz L., Cvetojevic S.: Data quality of points of interest in selected mapping and social media platforms. In: LBS 2018: 14th International Conference on Location Based Services, pp. 293–313, Springer, 2018.
  • [10] Jiang S., Alves A., Rodrigues F., Ferreira Jr J., Pereira F.C.: Mining point-ofinterest data from social networks for urban land use classification and disaggregation, Computers, Environment and Urban Systems, vol. 53, pp. 36–46, 2015. Sparse data classifier based on first-past-the-post voting system 295
  • [11] Kim J., Vasardani M., Winter S.: Similarity matching for integrating spatial information extracted from place descriptions, International Journal of Geographical Information Science, vol. 31(1), pp. 56–80, 2017.
  • [12] Kittler J., Hatef M., Duin R.P., Matas J.: On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20(3), pp. 226–239, 1998.
  • [13] Li L., Xing X., Xia H., Huang X.: Entropy-Weighted Instance Matching Between Different Sourcing Points of Interest, Entropy, vol. 18(2), 2016. doi: 10.3390/e18020045.
  • [14] Liu F.T., Ting K.M., Zhou Z.H.: Isolation Forest. In: 2008 Eighth IEEE International Conference on Data Mining, IEEE, 2008. doi: 10.1109/icdm.2008.17.
  • [15] McGarry K., Wermter S., MacIntyre J.: Hybrid neural systems: from simple coupling to fully integrated neural networks, Neural Computing Surveys, vol. 2(1), pp. 62–93, 1999.
  • [16] McKenzie G., Janowicz K., Adams B.: A weighted multi-attribute method for matching user-generated Points of Interest, Cartography and Geographic Information Science, vol. 41(2), pp. 125–137, 2014. doi: 10.1080/15230406.2014.880327.
  • [17] Novack T., Peters R., Zipf A.: Graph-Based Matching of Points-of-Interest from Collaborative Geo-Datasets, ISPRS International Journal of Geo-Information, vol. 7(3), pp. 1–17, 2018.
  • [18] OpenStreetMap, https://www.openstreetmap.org/.
  • [19] Piech M., Smywinski-Pohl A., Marcjan R., Siwik L.: Towards Automatic Points of Interest Matching, ISPRS International Journal of Geo-Information, vol. 9(5), pp. 1–29, 2020.
  • [20] Quinlan J.R.: Induction of decision trees, Machine Learning, vol. 1(1), pp. 81–106, 1986.
  • [21] Rodrigues F., Alves A., Polisciuc E., Jiang S., Ferreira J., Pereira F.: Estimating disaggregated employment size from points-of-interest and census data: From mining the web to model implementation and visualization, International Journal on Advances in Intelligent Systems, vol. 6(1), pp. 41–52, 2013.
  • [22] Safavian S.R., Landgrebe D.: A survey of decision tree classifier methodology, IEEE Transactions on Systems, Man, and Cybernetics, vol. 21(3), pp. 660–674, 1991.
  • [23] Scheffler T., Schirru R., Lehmann P.: Matching Points of Interest from Different Social Networking Sites. In: Lecture Notes in Computer Science, pp. 245–248, Springer, Berlin–Heidelberg, 2012. doi: 10.1007/978-3-642-33347-7˙24.
  • [24] Sehgal V., Getoor L., Viechnicki P.D.: Entity Resolution in Geospatial Data Integration. In: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 83–90, GIS ’06, ACM, New York, NY, USA, 2006. doi: 10.1145/1183471.1183486.
  • [25] Sun Y., Wang X., Tang X.: Hybrid deep learning for face verification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1489–1496, 2013.
  • [26] Svozil D., Kvasnicka V., Pospichal J.: Introduction to multi-layer feed-forward neural networks, Chemometrics and Intelligent Laboratory Systems, vol. 39(1), pp. 43–62, 1997.
  • [27] Touya G., Antoniou V., Olteanu-Raimond A.M., Van Damme M.D.: Assessing Crowdsourced POI Quality: Combining Methods Based on Reference Data, History, and Spatial Relations, ISPRS International Journal of Geo-Information, vol. 6(3), p. 80, 2017. doi: 10.3390/ijgi6030080.
  • [28] Tsai C.F., Chen M.L.: Credit rating by hybrid machine learning techniques, Applied Soft Computing, vol. 10(2), pp. 374–380, 2010.
  • [29] Tsai C.F., Wang S.P.: Stock price forecasting by hybrid machine learning techniques. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, p. 60, 2009.
  • [30] Van Erp M., Vuurpijl L., Schomaker L.: An overview and comparison of voting methods for pattern recognition. In: Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 195–200, IEEE, 2002.
  • [31] Yang B., Zhang Y., Lu F.: Geometric-based approach for integrating VGI POIs and road networks, International Journal of Geographical Information Science, vol. 28(1), pp. 126–147, 2014.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32dc6a31-bc5b-4958-94d7-7d868ba3f1c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.