PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activation of quartz flotation by Cu2+, Ni2+ in the sodium ethylxanthogenate (EX) system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the flotation of metal sulfide minerals, due to the interference of unavoidable ions, the quartz also partially floats in some cases. The studies on the mechanism of quartz being activated and floating up are still insufficient. In this study, the influence of the Cu2+ and Ni2+ unavoidable ions on the floatation of quartz was studied by micro-flotation experiments, adsorption detection, zeta potential measurement, solution composition calculation, infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses, and atomic force microscopy (AFM) observation. This provides a theoretical reference for further understanding the mechanism of sodium ethylxanthogenate and quartz surface, as well as the development of a new quartz depressant. The results of flotation showed that after activation by Cu2+ (1×10-4 mol/dm3) and Ni2+ (5×10-5 mol/dm3), the quartz was captured by sodium ethylxanthogenate (EX: 1.4×10-4 mol/dm3) under alkaline conditions (pH=10), while the best recoveries were obtained as 80% and 43%, respectively. The results of adsorption and zeta potential measurements showed that the precipitation rate of Cu2+ was greater than that of Ni2+ under alkaline conditions. Additionally, both Cu2+ and Ni2+ electrostatically adsorbed on the quartz surface and changed the zeta potential of quartz. The solution composition calculation further showed that Cu(OH)+, Cu(OH)2(s), and Ni(OH)+, Ni(OH)2(s) were the main components in the solution under alkaline conditions. The FT-IR and XPS analyses and AFM observations demonstrated that Cu and Ni species adsorbed on O atoms on the quartz surface, providing active sites for EX adsorption, and EX combines with Cu and Ni species on the quartz surface to generate -O-Cu-EX and -O-Ni-EX complexes. Finally, the quartz floated up due to the formation of hydrophobic products and firm adsorption.
Rocznik
Strony
art. no. 166368
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
Bibliografia
  • CAMERON, R.A., LASTRA, R., MORTAZAVI, S., BEDARD, P.L., MORIN, L., GOULD, W.D., KENNEDYA, K.J., 2009. Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at eleVated pH, Hydrometallurgy. 97, 213-220.
  • CAO, S.H., YIN, W.Z., YANG, B., ZHU, Z.L., SUN, H.R., SHENG, Q.Y., CHEN, K.Q., 2022. Insights into the influence of temperature on the adsorption behavior of sodium oleate and its response to flotation of quartz. Int. J. Min, Sci. Techno. 32, 399-409.
  • DONG, J.S., LIU, Q.J., SUBHONQULOV, S.H., SHENG, J., GAO, Y.L., LIU, M.L., 2022. Research on the flotation of sphalerite and germanium-bearing sphalerite activated by copper ion and its mechanism difference. Miner. Eng. 186. 107756.
  • DONG, J.S., LIU, Q.J., YU, L., SUBHONQULOV, S.H., 2022. Activation mechanism of copper ion in arsenopyrite flotation in high pH value. Miner. Eng. 179, 107465.
  • FORNASIERO, D., RALSTON, J., 2005. Cu (II) and Ni (II) activation in the flotation of quartz, lizardite and chlorite. Int. J. Miner. Process. 76, 75-81.
  • HAN, W.J., ZHU, Y.M., GE ,W.C., LIU, J., LI, Y.J., 2022. Curdlan as a new depressant of hematite for quartz-hematite reVerse flotation separation. Miner. Eng. 185, 107708.
  • GUAN, X.D., LI, P., LIU, W.K., CHANG, Q.Q., HAN, Y.W., ZHANG, J.K., ZHANG, H.L., LI, Q., ZHEN, S.L., 2022. Adsorption mechanism of yttrium ions onto ion-adsorption type rare earths ore. Sep. Purif. Technol. 299, 121641.
  • GUO, X.Y., SHI, W.T., LI, D., TIAN, Q.H., 2011. Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching. T. Nonferr. Metal. Soc. 21, 191-195.
  • HAO, H.Q., CAO, Y.J., LI, L.X., FAN, G.X., LIU, J.T., 2021. Dispersion and depression mechanism of sodium silicate on quartz: Combined molecular dynamics simulations and density functional theory calculations. Appl. Surf. Sci. 537, 147926.
  • HE, J.F., CHEN, H., ZHANG, M.M., CHEN, L.H., YAO, Q.Y., DAI, Y.P., ZHU, L.T., LIU, C.G., 2022. Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz. Colloid. Surface. A. 643, 128702.
  • LEROY, P., MAINEULT, A., LI, S., VINOGRADOV, J., 2022. The zeta potential of quartz. Surface complexation modelling to elucidate high salinity measurements. Colloid. Surface. A. 650, 129507.
  • LIU, J., WEN, S.M., WU, D.D., BAI, S.J., LIU, D., 2013. Determination of the concentrations of calcium and magnesium released from fluid inclusions of sphalerite and quartz. Miner. Eng. 45, 41-43.
  • LIU, B., WANG, X.M., DU, H., LIU, J., ZHENG, S.L., ZHANG, Y., MILLER, J.D., 2016. The surface features of lead activation in amyl xanthate flotation of quartz. Int. J. Miner. Process. 151, 33-39.
  • LIU, J., LIU, G.Y., HUANG, Y.G., ZHANG, Z.Y., 2019. Tetrazinan-thione collectors for copper oxide mineral: Synthesis and flotation mechanism. Appl. Surf. Sci. 491, 624-632.
  • LIU, C., ZHU, G.L., SONG, S.X., LI, H.Q., 2019. Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector. Miner. Eng. 131, 385-391.
  • LIU, W.G., PENG, X.Y., LIU, W.B., ZHANG, N.X., WANG, X.Y., 2022. A cost-effective approach to recycle serpentine tailings: Destruction of stable layered structure and solvent displacement crystallization. Int. J. Min, Sci. Techno. 32, 595-603.
  • LUO, B., NIE, W.L., DONG, J.S., 2022. Effect of lead ions on the sulfidization flotation of smithsonite using sodium butyl xanthate as a collector. Miner. Eng. 185, 107710.
  • LUO, Q. Y., SHI, Q., LIU, D.Z., LI, B.B., JIN, S.Z., 2022. Effect of deep oxidation of chalcopyrite on surface properties and flotation performance. Int. J. Min, Sci. Techno. 32, 907-914.
  • LV, L., WANG, X., REN, H., LIU, J., ZHU, Y. M., 2021. Depressing behaviors and mechanism of an eco-friendly depressant on flotation separation of cassiterite and fluorite. J. Mol. Liq. 322, 114898.
  • MWEENE, L., KHANAL, G.P., NAMBAJE, C., 2021. Experimental study on the separation of quartz from pyrite using alginate as a selective depressant substantiated by theoretical analysis on intermolecular bonding. Sep. Purif. Technol. 276, 119251.
  • NAKLICKI, M.L., RAO, S.R., GOMEZ, M., FINCH, J.A., 2002. Flotation and surface analysis of the nickel (II) oxide/amyl xanthate system. Int. J. Miner. Process. 65, 73-82.
  • NOWOSIELSKA, A.M., NIKOLOSKI, A.N., PARSONS, D.F., 2022. Interactions between coarse and fine galena and quartz particles and their implications for flotation in NaCl solutions. Miner. Eng. 183, 107591.
  • XIE, R.Q., ZHU, Y.M., LIU, J., LI, Y.J., 2021. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz, Sep. Purif. Technol. 264, 118445.
  • XIE, R.Q., ZHU, Y.M., LIU, J., LI, Y.J., 2021. Effects of metal ions on the flotation separation of spodumene from feldspar and quartz. Miner. Eng. 168, 106931.
  • XIE, R.Q., ZHU, Y.M., LIU, J., LI, Y.J., 2021. Flotation behavior and mechanism of α-bromododecanoic acid as collector on the flotation separation of spodumene from feldspar and quartz. J. Mol. Liq. 336, 116303.
  • WANG, Y.F., KHOSO, S.A., LUO, X.M., TIAN, M.J., 2019. Understanding the depression mechanism of citric acid in sodium oleate flotation of Ca2+-activated quartz: Experimental and DFT study, Miner. Eng. 140, 105878.
  • WANG, X., LIU, J., ZHU, Y.M., HAN, Y.X., 2021. Adsorption and depression mechanism of an eco-friendly depressant PCA onto chalcopyrite and pyrite for the efficiency flotation separation, Colloid. Surface. A. 620, 126574.
  • WANG, L., GAO, H.Y., SONG, S.M., ZHOU, W.G., XUE, N., NIE, Y.M., FENG, B., 2021. The depressing role of sodium alginate in the flotation of Ca2+-activated quartz using fatty acid collector. J. Mol. Liq. 343, 117618.
  • WANG, H., FENG, L.Y., MANICA, R., LIU, Q.X., 2021. Selective depression of millerite (β-NiS) by polysaccharides in alkaline solutions in Cu-Ni sulphides flotation separation, Miner. Eng. 172, 107139.
  • WANG, L., WANG, G.D., GE, P., SUN, W., TANG, H.H., HU, W.J.H., 2022. Activation mechanisms of quartz flotation with calcium ions and cationic/anionic mixed collectors under alkalescent conditions. Colloid. Surface. A. 632, 127771.
  • WANG, H., HAN, J.A., MANICA, R., QI, C., LIU, Q.X., 2022. Effect of Cu(II) ions on millerite (β-NiS) flotation and surface properties in alkaline solutions. Miner. Eng. 180, 107443.
  • WANG, M.T., ZHANG, G.F., ZHAO, L., CHEN, Y.F., LIU, D.Z., LI, C.B., 2022. Application of eco-friendly tetrasodium iminodisuccinate for separation of smithsonite from zinc ions activated quartz. Miner. Eng. 181, 107545.
  • WATLING, H.R., 2008. The bioleaching of nickel-copper sulfides. Hydrometallurgy. 91, 70-88.
  • YANG, S.Y., WANG, L.G., 2019. Measurement of froth zone and collection zone recoveries with various starch depressants in anionic flotation of hematite and quartz. Miner. Eng. 138, 31-42.
  • ZHANG, Q., WEN, S.M., FEN, Q.C., LIU, Y.B., 2021. Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector. Miner. Eng. 163, 106809.
  • ZHANG, Q., WEN, S.M., NIE, W.L., FENG, Q.C., 2022. Effect of dissolved species of cerussite on quartz flotation in sulfidization xanthate system. J. Mol. Liq. 356, 119055.
  • ZHANG, Q., WEN, S.M., NIE, W.L., FENG, Q.C., 2022. Effect of dissolved species of cerussite on quartz flotation in sulfidization xanthate system. J. Mol. Liq. 365, 119055.
  • ZHANG, Y., ZHANG, X.L., LIU, X.X., CHANG, T.C., NING, S., SHEN, P.L., LIU, R.Z., LAI, H., LIU, D.W., YANG, X.Y, 2022. Carrageenan xanthate as an environmental-friendly depressant in the flotation of Pb–Zn sulfide and its underlying mechanism, Colloid. Surface. A. 653, 129926.
  • ZHAO, K.L., YAN, W., WANG, X.H., WANG, Z., GAO, Z.Y., WANG, C.Q., HE, W., 2020. Effect of a novel phosphate on the flotation of serpentine-containing copper-nickel sulfide ore. Miner. Eng. 150, 106276.
  • ZHAO, L., ZHANG, G.F., WANG, M.T., ZHENG, S.Y., LI, B.B., 2022. Selective separation of smithsonite from quartz by using sodium polyaspartate as a depressant. Colloid. Surface. A. 644, 128840.
  • ZHAO, W.J., WANG, M.L., YANG, B., FENG, Q.C., LIU, D.W., 2022. Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper–ammonium species. Miner. Eng. 187, 107796.
  • ZHOU, C.Y., LIU, L.Y., CHEN, J., MIN, F.F., LU, F.Q., 2022. Study on the influence of particle size on the flotation separation of kaolinite and quartz. Powder Technol. 408, 117747.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32dc26fd-1ae0-4252-badc-ce64f57ecca7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.