PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Renewable energy electric sources as a support for multilevel cellular communication networks in various environment conditions : case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cellular mobile communication networks are experiencing an important evolution with the emerging deployment of 5G networks and the successive decline in the use of previous generations in the years to come. In parallel, policies promoting ecological transition are gaining social impact and economic interest and this seems to be the trend in the near future. In the telecommunications market, the shift between two dominant generations could be an important opportunity to introduce renewable energy sources to green the sector, reducing the carbon footprint of the world-wide extended activity. This work analyses the current situation and provides an insight into the possibilities to incorporate renewable energy supplies, specifically photovoltaics (as it seems to be the most promising among clean electric sources), perhaps combined with small wind turbines in off-grid systems. Paper also compares the characteristics of standard facilities in Spain and Poland, two different European countries in terms of weather and insolation hours.
Rocznik
Strony
art. no. e3145436
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Dept. of Signal Theory and Communications, Universidade de Vigo, atlanTTic Research Center, 36310 Vigo, Spain
  • Dept. of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Wólczańska 211–215, 90-001 Lodz, Poland
  • Dept. of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Wólczańska 211–215, 90-001 Lodz, Poland
Bibliografia
  • [1] Europe’s moment: Repair and Prepare for the Next Generation. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. European Commission. (2020). https://eur-lex.europa.eu/legal-content/EN/ TXT/PDF/?uri=CELEX:52020DC0456&from=en
  • [2] Wu, J., Zhang, Y., Zukerman, M. & Yung, E.K.-N. Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE Commun. Surv. Tutor. 17, 803-825 (2015). https://doi.org/10.1109/COMST.2015.2403395
  • [3] Fehske, A., Fettweis, G., Malmodin, J. & Biczók, G. The global footprint of mobile communications: the ecological and economic perspective. IEEE Commun. Mag. 49, 55-62 (2011). https://doi.org/10.1109/MCOM.2011.5978416
  • [4] Wu, J., Wong, E. W. M., Chan, Y.-C. & Zukerman, M. Power consumption and GoS tradeoff in cellular mobile networks with base station sleeping and related performance studies. IEEE Trans. Green Commun. Netw. 4, 1024-1036 (2020). https://doi.org/10.1109/TGCN.2020.3000277
  • [5] Osseiran, A. et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 52, 26-35 (2014). https://doi.org/10.1109/MCOM.2014.6815890
  • [6] Wang, W., Li, X., Liu, D., Cai, Z. & Gong, C. Multilevel power modeling of base station and its ICs. China Commun. 12, 22-33 (2015). https://doi.org/10.1109/CC.2015.7112041
  • [7] Chang, K.-C., Chu, K.-C., Wang, H.-C., Lin, Y.-C. & Pan, J.-S. Energy saving technology of 5G base station based on internet of things collaborative control. IEEE Access 8, 32935-32946 (2020). https://doi.org/10.1109/ACCESS.2020.2973648
  • [8] Connolly, D., Lund, H. & Mathiesen, B. V. Smart energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 60, 1634-1653 (2016). https://doi.org/10.1016/j.rser.2016.02.025
  • [9] Koval, V., Sribna, Y., Kaczmarzewski, S., Shapovalova, A. & Stupnytskyi, V. Regulatory policy of renewable energy sources in the European national economies. Energy Policy J. 24, 61-78 (2021). https://doi.org/10.33223/epj/141990
  • [10] de Llano-Paz, F., Calvo-Silvosa, A., Iglesias Antelo, S. & Soares, I. The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach. Renew. Sustain. Energy Rev. 48, 49-61 (2015). https://doi.org/10.1016/j.rser.2015.03.032
  • [11] Kelm, P., Mieński, R. & Wasiak, I. Energy management in a prosumer installation using hybrid systems combining EV and stationary storages and renewable power sources. Appl. Sci. 11, 5003 (2021). https://doi.org/10.3390/app11115003
  • [12] Energy Transition Outlook – A global and regional forecast of the energy transition to 2050. DNV https://www.dnv.com/Videos/energy-transition-outlook-a-global-and-regional-forecast-to-2050-208611#
  • [13] Wang, W., Liu, D., Zhang, Y. & Gong, C. Energy estimation and optimization platform for 4G and the future base station system early-stage design. China Commun. 14, 47-64 (2017). https://doi.org/10.1109/CC.2017.7927576
  • [14] Shanmugavalli, R. & Subashini, P. Energy consumption analysis in WSN based on node placement strategies. Int. J. Eng. Technol. 7, 531-535 (2018). https://doi.org/10.14419/.v7i3.12.16173
  • [15] IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metro-politan Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4 GHz Band - Corrigendum 1. in IEEE Std 802.11b-1999/Cor 1-2001 1-24 (2001). https://doi.org/10.1109/IEEESTD.2001.93363
  • [16] IEEE Standard for Information technology – Local and Metropolitan Area Networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Through-put. in IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009 1-565 (2009). https://doi.org/10.1109/IEEESTD.2009.5307322
  • [17] Guegan, L. & Orgerie, A.-C. Estimating the End-To-End Energy Consumption of Low-Bandwidth Iot Applications for Wifi Devices. in IEEE International Conference on Cloud Computing Technology and Science (CloudCom) 287-204 (2019). https://doi.org/10.1109/CloudCom.2019.00049
  • [18] Electricity usage of a Wi-Fi Router. EnergyUseCalculator.com https://energyusecalculator.com/electricity_wifirouter.htm
  • [19] Goss, S. The German energy market review. Energy Brainpool GmbH & Co. KG. (July 2020). https://blog.energybrainpool.com/en/the-german-energy-market-review-july-2020/
  • [20] Demand for electricity in Spain falls by 3.9% in September 2019. RED Electrica de Espana https://www.ree.es/en/press-office/news/ press-releases/2019/10/demand-electricity-spain-falls-3-9-september
  • [21] Monthly Energy Review. U.S. Energy Information Administration (EIA) (2021). https://www.eia.gov/totalenergy/data/monthly/archive/ 00352105.pdf
  • [22] Liying, L. & Jiuping, X. Multi-objective generation scheduling towards grid-connected hydro-solar–wind power system based the coordination of economy, management, society, environment: A case study from China. Int. J. Electr. Power Energy Syst. 142, 108210 (2022). https://doi.org/10.1016/j.ijepes.2022.108210
  • [23] Yi L. et al. Increases in China’s wind energy production from the recovery of wind speed since 2012. Environ. Res. Lett. 17, 114035 (2022). https://doi.org/10.1088/1748-9326/ac9cf4
  • [24] Elbahnasy, I. & Ellerman, K. An Approach for Cost And Configuration Optimization of Horizontal Axis Wind Turbine (HAWT). in International Conference on Renewable Energies and Power Quality (ICREPQ’14) 779-784 (2014). https://www.icrepq.com/icrepq'14/486.14-Elbanasy.pdf
  • [25] Gomaa, M. R., Rezk, H., Mustafa, R. J. & Al-Dhaifallah, M. Evaluating the environmental impacts and energy performance of a wind farm system utilizing the life-cycle assessment method: A practical case study. Energies 12, 3263 (2019). https://doi.org/10.3390/en12173263
  • [26] Khan, S. & Haque, I. Enhanced Audio-Visual Warnings for Reducing Bird Fatalities at Wind Turbines. in 3rd International Conference on Green Energy and Technology (ICGET) 1-6 (2015). https://doi.org/10.1109/ICGET.2015.7315115
  • [27] Wójcik, G. P. The Polish Invention - Vertical Wind Power Stations - Renewable Energy Sources’ Future. in 3rd International Symposium on Energy Challenges and Mechanics (2015). https://www.nscj.co.uk/ecm3/sessions/181_GrazynaWojcik.pdf
  • [28] Muhammad, A., Aamer, S. & Nafez Mumatz Quadri, M. An overview of aerodynamic performance analysis of vertical axis wind turbines. Energy Environ. 8, (2022). https://doi.org/10.1177/0958305X221121281
  • [29] O’Shaughnessy, E. Trends in the market structure of US residential solar PV installation 2000 to 2016: An evolving industry. Prog. Photovolt. 26, 901-910 (2018). https://doi.org/10.1002/pip.3030
  • [30] 6th International Technology Roadmap for Photovoltaics (ITRPV) Report. Solar Choice (2015). https://www.solarchoice.net.au/blog/ news/2015-international-technology-roadmap-for-photovoltaics-released-040515/
  • [31] Weiss, K. A., Klimm, E. & Kaaya, I. Accelerated aging tests vs field performance of PV modules. Prog. Energy 4, 042009 (2022). https://doi.org/10.1088/2516-1083/ac890a
  • [32] Green, M. et al. Solar cell efficiency tables (Version 60). Prog. Photovolt. 30, 687-701 (2022). https://doi.org/10.1002/pip.3595
  • [33] Hayes, M. Synergies between Energy Harvesting and Power Eelectronics. IEEE PELYS Young Profesionalist Webinar. (2016). https://resourcecenter.ieee-pels.org/education/webinars/PELSWEB010202016.html
  • [34] Ighodalo Okhueleigbe, E. & Godswill, O. Mini-hydro turbine: solution to power challenges in an emerging society with abundance of water. Am. J. Eng. Technol. Manage. 2, 7-12 (2017). https://doi.org/10.11648/j.ajetm.20170202.11
  • [35] Rudzka, R. Renewable energy generator with water generating system. (Lodz University of Technology, 2021).
  • [36] Woźny, J., Gozdur, R., Guzowski, B. & Bernacki, Ł. Micromagnetic simulation of thermal generation of spin waves using MuMax3. Acta Phys. Pol. 137, 737-740 (2020). https://doi.org/10.12693/APhysPolA.137.737
  • [37] Adetunla, A., Rominiyi, O., Adaramola, B. & Adeoye, A. Development of a wind turbine for a hybrid solar-wind power system. Heliyon 8, e11458 (2022). https://doi.org/10.1016/j.heliyon.2022.e11458
  • [38] Marsan, M. A., Chiaraviglio, L., Ciullo, D. & Meo, M. On the effectiveness of single and multiple base station sleep modes in cellular networks. Comput. Netw. 57, 3276-3290 (2013). https://doi.org/10.1016/j.comnet.2013.07.016
  • [39] Soh, Y. S., Quek, T., Kountouris, M. & Shin, H. Energy efficient heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 31, 840-850 (2013). https://doi.org/10.1109/JSAC.2013.130503
  • [40] Chen, Y., Zhang, S., Xu, S. & Li, G. Y. Fundamental trade-offs on green wireless networks. IEEE Commun. Mag. 49, 30-37 (2011). https://doi.org/10.1109/MCOM.2011.5783982
  • [41] He, G., Zhang, S., Chen, Y. & Xu, S. Fundamental Tradeoffs And Evaluation Methodology for Future Green Wireless Networks. in 1st IEEE International Conference on Communications in China Workshops (ICCC) 74-78 (2012). https://doi.org/10.1109/ICCCW.2012.6316478
  • [42] Han, C. et al. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Commun. Mag. 49, 46-54 (2011). https://doi.org/10.1109/MCOM.2011.5783984
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32dc18f7-3ba0-4041-a355-02a4b30fa92b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.