PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A scaffold knit with natural sericin-free silk fibroin fiber possesses desirable mechanical properties, biocompatibility, ease of fabrication, and slow degradability. However, regenerated silk fibroin degrades faster than natural silk. In this study, natural silk fibroin fiber mesh-like scaffolds were prepared by a weft-knitting method and the pores were filled with sponge-like regenerated silk fibroin-collagen I. The microporous sponge and mesh-like scaffolds were fused to achieve gradient degradation of the scaffolds, and rabbit bone marrow mesenchymal stem cells (BMSCs) were seeded onto the scaffolds to form scaffold–BMSCs composites. The composites were implanted into gap defects made in the rabbit Achilles tendon. Twenty weeks after implantation, histological observation showed that tendon-like tissue had formed, collagen I mRNA was expressed, abundant collagen was generated, and that there was no obvious degradation of silk. The maximum load of the neo-Achilles tendon was 62.14% that of the natural Achilles tendon. These outcomes were superior to those obtained in the group implanted with a scaffold without BMSCs. These findings suggest the feasibility of constructing tissue-engineered tendons using weft-knitted silk scaffolds incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with BMSCs, and show potential of the scaffold–BMSCs composites to repair Achilles tendon defects.
Rocznik
Strony
77--87
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Health Food, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
autor
  • Institute of Bioengineering, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
autor
  • Institute of Health Food, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
autor
  • Institute of Bioengineering, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
autor
  • Institute of Bioengineering, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
autor
  • Institute of Bioengineering, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
autor
  • Institute of Bioengineering, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang Province, China
Bibliografia
  • [1] BUTLER D.L., JUNCOSA N., DRESSLER M.R., Functional efficacy of tendon repair processes, Annu. Rev. Biomed. Eng., 2004, 6, 303–329.
  • [2] ABBAH S.A., SPANOUDES K., O’BRIEN T., PANDIT A., ZEUGOLIS D.I., Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models, Stem. Cell. Res. Ther., 2014, 5(2), 38.
  • [3] DOCHEVA D., MÜLLER S.A., MAJEWSKI M., EVANS C.H., Biologics for tendon repair, Adv. Drug. Deliv. Rev., 2015, 84, 222–239.
  • [4] SHARIFI-AGHDAM M., FARIDI-MAJIDI R., DERAKHSHAN M.A., CHEGENI A., AZAMI M., Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering, Proc. Inst. Mech. Eng. H., 2017, 231(7), 652–662.
  • [5] YAO D., LIU H., FAN Y., Silk scaffolds for musculoskeletal tissue engineering, Exp. Biol. Med. (Maywood), 2016, 241(3), 238–245.
  • [6] SHAPIRO E., GRANDE D., DRAKOS M., Biologics in Achilles tendon healing and repair: a review, Curr. Rev. Musculoskelet. Med., 2015, 8(1), 9–17.
  • [7] LIU H., FAN H., WANG Y., TOH S.L., GOH J.C., The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering, Biomaterials, 2008, 29(6), 662–674.
  • [8] LIU H., GE Z., WANG Y., TOH S.L., SUTTHIKHUM V., GOH J.C., Modification of sericin-free silk fibers for ligament tissue engineering application, J. Biomed. Mater. Res. B Appl. Biomater., 2007, 82(1), 129–138.
  • [9] ALTMAN G.H., DIAZ F., JAKUBA C., CALABRO T., HORAN R.L., CHEN J., LU H., RICHMOND J., KAPLAN D.L., Silk-based biomaterials, Biomaterials, 2003, 24(3), 401–416.
  • [10] CAO Y., WANG B., Biodegradation of silk biomaterials, Int. J. Mol. Sci., 2009, 10(4), 1514–1524.
  • [11] GUO Y., CHEN Z., WEN J., JIA M., SHAO Z., ZHAO X., A simple semi-quantitative approach studying the in vivo degradation of regenerated silk fibroin scaffolds with different pore sizes, Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 79, 161–167.
  • [12] ZUO BAOQI, WU ZHIYU, Mechanical and biodegradable properties of regenerated fibroin fibers, Chinese Journal of Clinical Rehabilitation, 2006, 10(1), 168–171.
  • [13] ALTMAN G.H., HORAN R.L., LU H.H., MOREAU J., MARTIN I., RICHMOND J.C., KAPLAN D.L., Silk matrix for tissue engineered anterior cruciate ligaments, Biomaterials, 2002, 23(20), 4131–4141.
  • [14] LI X., SNEDEKER J.G., Wired silk architectures provide a biomimetic ACL tissue engineering scaffold, J. Mech. Behav. Biomed. Mater., 2013, 22, 30–40.
  • [15] CHEN X., QI Y.Y., WANG L.L., YIN Z., YIN G.L., ZOU X.H., OUYANG H.W., Ligament regeneration using a knitted silk scaffold combined with collagen matrix, Biomaterials, 2008, 29(27), 3683–3692.
  • [16] XU W., ZHOU F., OUYANG C., YE W., YAO M., XU B., Mechanical properties of small-diameter polyurethane vascular grafts reinforced by weft-knitted tubular fabric, J. Biomed. Mater. Res. A, 2010, 92(1), 1–8.
  • [17] BUTLER D.L., JUNCOSA-MELVIN N., BOIVIN G.P., GALLOWAY M.T., SHEARN J.T., GOOCH C., AWAD H., Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation, J. Orthop. Res., 2008, 26(1), 1–9.
  • [18] JUNCOSA-MELVIN N., BOIVIN G.P., GOOCH C., GALLOWAY M.T., WEST J.R., DUNN M.G., BUTLER D.L., The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair, Tissue Eng., 2006, 12(2), 369–379.
  • [19] OUYANG H.W., GOH J.C., LEE E.H., Viability of allogeneic bone marrow stromal cells following local delivery into patella tendon in rabbit model, Cell Transplant., 2004, 13(6), 649–657.
  • [20] DAVIES B.M., MORREY M.E., MOUTHUY P.A., BABOLDASHTI N.Z., HAKIMI O., SNELLING S., PRICE A., CARR A., Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Regen Med., 2013, 8(5), 613–630.
  • [21] OUYANG H.W., GOH J.C., THAMBYAH A., TEOH S.H., LEE E.H., Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon, Tissue Eng., 2003, 9(3), 431–439.
  • [22] LIU H., FAN H., TOH S.L., GOH J.C., A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds, Biomaterials, 2008, 29(10), 1443–1453.
  • [23] CAMILO C.C., FORTULAN C.A., IKEGAMI R.A., SANTOS AR., DE M.P.B., Manufacturing of porous alumina scaffolds with Bio-Glass and HAp coating: mechanical and In vitro evaluation, Key Engineering Materials, 2009, 396–398, 679–682.
  • [24] MANDAL B.B., KUNDU S.C., Biospinning by silkworms:silk fiber matrices for tissue engineering applications, Acta Biomater., 2010, 6(2), 360–371.
  • [25] SHARIFI-AGHDAM M., FARIDI-MAJIDI R., DERAKHSHAN M.A., CHEGENI A., AZAMI M., Preparation of collagen/polyurethane/ knitted silk as a composite scaffold for tendon tissue engineering, Proc. Inst. Mech. Eng. H, 2017, 231(7), 652–662.
  • [26] MUSSON D.S., NAOT D., CHHANA A., MATTHEWS B.G., MCINTOSH J.D., LIN S.T., CHOI A.J., CALLON K.E., DUNBAR P.R., LESAGE S., COLEMAN B., CORNISH J., In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration, Tissue Eng. Part A, 2015, 21(9–10), 1539–1551.
  • [27] KASOJU N., BORA U., Silk fibroin in tissue engineering, Adv. Healthc. Mater., 2012, 1(4), 393–412.
  • [28] ROCKWOOD D.N.,PREDA R.C.,YÜCEL T.,WANG X.,LOVETT M.L., KAPLAN D.L., Materials fabrication from Bombyx mori silk fibroin, Nat. Protoc., 2011, 6(10), 1612–1631.
  • [29] VEPARI C., KAPLAN D.L., Silk as a biomaterial, Prog. Polym. Sci., 2007, 32(8–9), 991–1007.
  • [30] JAO D., MOU X., HU X., Tissue regeneration:a silk road, J. Funct. Biomater., 2016, 7(3), 22.
  • [31] LU H.H., COOPER J.A. JR, MANUEL S., FREEMAN J.W., ATTAWIA M.A., KO F.K., LAURENCIN C.T., Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies, Biomaterials, 2005, 26(23), 4805–4816.
  • [32] ATTIA M., SANTERRE J.P., KANDEL R.A., The response of annulus fibrosus cell to fibronectin-coated nanofibrous polyurethane-anionic dihydroxyoligomer scaffolds, Biomaterials, 2011, 32(2), 450–460.
  • [33] SMEETS R., KNABE C., KOLK A., RHEINNECKER M., GRÖBE A., HEILAND M., ZEHBE R., SACHSE M., GROßE-SIESTRUP C., WÖLTJE M., HANKEN H., Novel silk protein barrier membranes for guided bone regeneration, J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(8), 2603–2611.
  • [34] OLIVEIRA A.L., SUN L., KIM H.J., HU X., RICE W., KLUGE J., REIS R.L., KAPLAN D.L., Aligned silk-based 3-D architectures for contact guidance in tissue engineering, Acta Biomater., 2012, 8(4), 1530–1542.
  • [35] MADDURI S., PAPALOÏZOS M., GANDER B., Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration, Biomaterials, 2010, 31(8), 2323–2334.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32d9d795-cfc1-4f26-b85f-70f7ca0370dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.