PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, wear and mechanical properties of plasma sprayed TiO2 coating on Al–SiC metal matrix composite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the hard TiO2 coating was plasma sprayed on the Al/SiC composite substrate. The coating was characterised for microstructure, mechanical and tribological properties and compared with the substrate. The key findings from the present study are: (1) The lamellae structure of the coating contains semi and fully melted particles, round porosity without any evidence of spallation or delamination or un-melted particles and non-stoichiometric and oxygen deficient phases and shorter stand-off distance would be a probable reason for the occurrence of partial melted regions and porosity in the coating, (2) The coating has improved significantly scratch resistance, hardness, fracture roughness, friction coefficient and wear resistance of the substrate, and (3) mild abrasive wear is responsible for low wear loss in the coated sample whereas the combination of severe delamination wear and abrasive wear causes the considerable wear loss in the uncoated sample.
Rocznik
Strony
756--767
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • School of Mechanical Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
  • School of Mechanical Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
autor
  • School of Mechanical Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
autor
  • Centre for Military Airworthiness and Certification, Defence R&D Organization, Bengaluru 560093, Karnataka, India
  • Centre for Military Airworthiness and Certification, Defence R&D Organization, Bengaluru 560093, Karnataka, India
Bibliografia
  • [1] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, Ltd., England, 2008.
  • [2] J. Umer, N. Morris, M. Leighton, R. Rahmani, S. Howell-Smith, R. Wild, H. Rahnejat, Asperity level tribological investigation of automotive bore material and coatings, Tribol. Int. 117 (2018) 131–140.
  • [3] T. Ram Prabhu, An overview of high-performance aircraft structural Al alloy-AA7085, Acta Metall. Sin. 28 (7) (2015) 909– 921.
  • [4] A. Heidarzadeh, H. Pouraliakbar, S. Mahdavi, M.R. Jandaghi, Ceramic nanoparticles addition in pure copper plate: FSP approach, microstructure evolution and texture study using EBSD, Ceram Int. 44 (3) (2018) 3128–3133.
  • [5] T. Ram Prabhu, Processing and properties evaluation of functionally continuous graded 7075 Al alloy/SiC composites, Arch. Civil Mech. Eng. 17 (1) (2017) 20–31.
  • [6] A.H. Monazzah, H. Pouraliakbar, R. Bagheri, S.M.S. Reihani, Toughness behavior in roll-bonded laminates based on AA6061/SiCp composites, Mater. Sci. Eng. A 598 (2014) 162– 173.
  • [7] A.H. Monazzah, H. Pouraliakbar, R. Bagheri, S.M.S. Reihani, Al-Mg-Si/SiC laminated composites: fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms, Composites Part B: Eng. 125 (2017) 49–70.
  • [8] A.H. Monazzah, R. Bagheri, S.M.S. Reihani, H. Pouraliakbar, Toughness enhancement in architecturally modified Al6061- 5vol.% SiCp laminated composites, Int. J. Damage Mech. 24 (2) (2015) 245–262.
  • [9] A.H. Monazzah, H. Pouraliakbar, M.R. Jandaghi, R. Bagheri, S. M.S. Reihani, Influence of interfacial adhesion on the damage tolerance of Al6061/SiCp laminated composites, Ceram. Int. 43 (2) (2017) 2632–2643.
  • [10] J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004. p. 338.
  • [11] P. Fauchais, J. Heberlein, M. Boulos, Thermal Spraying, Elsevier, Amsterdam, NL, 2012.
  • [12] N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong, S. Jiansirisomboon, Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition, Surf. Coat Technol. 204 (9–10) (2010) 1651–1657.
  • [13] M.J. Ghazali, S.M. Forghani, N. Hassanuddin, A. Muchtar, A.R. Daud, Comparative wear study of plasma sprayed TiO2 and Al2O3–TiO2 on mildsteels, Tribol. Int. 93 (2016) 681–686.
  • [14] E. Klyatskinaa, E. Rayón, G. Darut, M.D. Salvador, E. Sánchezc, G. Montavon, A study of the influence of TiO2 addition in Al2O3 coatings sprayed by suspension plasma spray, Surf. Coat Technol. 278 (2015) 25–29.
  • [15] N. Li, G.-l. Li, H.-d. Wang, J.-j. Kang, T.-s. Dong, H.-j. Wang, Influence of TiO2 content on the mechanical and tribological properties of Cr2O3-based coating, Mater. Des. 88 (2015) 906– 914.
  • [16] A. Jemat, M.J. Ghazali, M. Razali, Y. Otsuka, A. Rajabi, Effects of TiO2 on microstructural, mechanical properties and in-vitro bioactivity of plasma sprayed yttria stabilised zirconia coatings for dental application, Ceram. Int. 44 (4) (2018) 4271– 4281.
  • [17] E. Rayón, V. Bonache, M.D. Salvador, E. Bannier, E. Sánchez, A. Denoirjean, H. Ageorges, Nano indentation study of the mechanical and damage behaviour of suspension plasma sprayed TiO2 coatings, Surf. Coat. Technol. 206 (10) (2012) 2655–2660.
  • [18] M.C. Bordes, M. Vicent, R. Moreno, J. García-Montaño, A. Serra, E. Sánchez, Application of plasma-sprayed TiO2 coatings for industrial (tannery) wastewater treatment, Ceramics Int.: Part B 41 (10) (2015) 14468–14474.
  • [19] G.A. Sites, Plasma at Work, second edition, Create Space Independent Publishing Platform, Ohio, USA, 2007.
  • [20] ASTM Standard C1624 (05) – Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch testing, ASTM International, Conshohocken, 2005.
  • [21] A.G. Evans, T.R. Wilshaw, Quasi-static solid particle damage in brittle solids – I. Observations analysis and implications, Acta Metall. 24 (10) (1976) 939–956.
  • [22] S. Yilmaz, M. Ipek, G.F. Celebi, C. Bindal, The effect of bond coat on mechanical properties of plasma-sprayed Al2O3 and Al2O3–13 wt% TiO2 coatings on AISI 316L stainless steel, Vacuum 77 (3) (2005) 315–321.
  • [23] M.J. Ghazali, S.M. Forghani, N. Hassanuddin, A. Muchtar, A.R. Daud, Comparative wear study of plasma sprayed TiO2 and Al2O3–TiO2 on mild steels, Tribol. Int. 93 (2016) 681–686.
  • [24] C.J. Li, W.Z. Wang, Quantitative characterization of lamellar microstructure of plasma-sprayed ceramic coatings through visualization of void distribution, Mater. Sci. Eng.: A 386 (1–2) (2004) 10–19.
  • [25] M. Xue, S. Chandra, J. Mostaghimi, H.R. Salimijazi, Formation of pores in thermal spray coatings due to incomplete filling of crevices in patterned surfaces, Plasma Chem. Plasma Process. 27 (2007) 647–657.
  • [26] S. Yugeswaran, V. Selvarajan, D. Seo, K. Ogawa, Effect of critical plasma spray parameter on properties of hollow cathode plasma sprayed alumina coatings, Surf. Coat. Technol. 203 (2008) 129–136.
  • [27] D. Wang, Z. Tian, L. Shen, Z. Liu, Y. Huang, Microstructural characteristics and formation mechanism of Al2O3–13 wt% TiO2 coatings plasma-sprayed with nanostructured agglomerated powders, Surf. Coat. Technol. 203 (10–11) (2009) 1298–1303.
  • [28] X. Lin, Y. Zeng, S.W. Lee, C. Ding, Characterization of alumina– 3wt% titania coating prepared by plasma spraying of nanostructured powders, J. Eur. Ceram. Soc. 24 (2004) 627–634.
  • [29] W.W. Dai, C.X. Ding, J.F. Li, Y.F. Zhang, P.Y. Zhang, Wear mechanism of plasma-sprayed TiO2 coating against stainless steel, Wear 196 (1996) 238–242.
  • [30] J. Gandra, P. Vigarinho, D. Pereira, R.M. Miranda, A. Velhinho, P. Vilaça, Wear characterization of functionally graded Al–SiC composite coatings produced by friction surfacing, Mater. Des. 52 (2013) 373–383.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32cf4b4f-0ae8-42e5-8b75-da99acc419e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.