PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the WLS design for positron emission mammography and Total-Body J-PET systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Total-body positron emission tomography (PET) instruments are medical imaging devices that detect and visualize metabolic activity in the entire body. The PET scanner has a ring-shaped detector that surrounds the patient and detects the gamma rays emitted by the tracer as it decays. Usually these detectors are made up of scintillation crystals coupled to photodetectors that convert the light produced by the scintillation crystal into electrical signals. Jagiellonian Positron Emission Mammograph (J-PEM) is the first J-PET prototype module based on a novel idea with a plastic scintillator and wavelength shifter (WLS). At the same time, it is a prototype module for the Total-Body J-PET system. J-PEM can be an effective system for the detection and diagnosis of breast cancer in its early stage by improving sensitivity. This can be achieved using the superior timing properties of plastic scintillators combined with the WLS sheets readout. In this paper we present an application of the Geant4 program for simulating optical photon transport in the J-PEM module. We aim to study light transport within scintillator bars and WLS sheets to optimize gamma-ray hit position resolution. We simulated a pencil beam of 511 keV photons impinging the scintillator bar at different locations. For each condition we calculated the value of the pulse height centroid and the spread of the photon distribution. Some free parameters of the simulation, like reflectivity and the effective attenuation length in the sheet, were determined from a comparison to experimental data. Finally, we estimated the influence of the application of WLS layer in the Total-Body J-PET on the scatter fraction. To optimize the performance of the J-PEM module we compared geometry WLS strips 50 and 83. It was found that spatial resolution was 2.7 mm and 3.5 mm FWHM for 50 and 83 WLS strips, respectively. Despite the better granularity, the 83-strip WLS geometry exhibited poorer resolution due to fewer photons being transmitted to the strip, resulting in large fluctuations of signal.
Słowa kluczowe
Rocznik
Strony
114--123
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Institute for Nuclear Research of the NAS of Ukraine, Kyiv, Ukraine
  • Institute of Physics, University of Tartu, Tartu, Estonia
  • Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Doctoral School of Exact and Natural Science, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
  • Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Moskal P, Stępień E. Prospects and clinical perspectives of totalbody PET imaging using plastic scintillators. PET Clinics. 2020:15:439-52.
  • 2. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular totalbody J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol. 2021;66:175015.
  • 3. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the explorer total-body pet scanner. J Nucl Med. 2019;60:299.
  • 4. Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uExplorer total-body pet/ct scanner based on NEMA-nu 2-2018 with additional tests to characterize pet scanners with a long axial field of view. J Nucl Med. 2021;61:861.
  • 5. Dai B, Daube-Witherspoon ME, McDonald S, Werner ME, Parma MJ, Geagan MJ, et al. Performance evaluation of the PennPET explorer with expanded axial coverage. Phys Med Biol. 2023;68:095007.
  • 6. Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance characteristics of the biograph vision quadra pet/ct system with a long axial field of view using the NEMA NU 2-2018 standard. J Nucl Med. 2022;63:476.
  • 7. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems. 2021;17:203-20.
  • 8. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:35.
  • 9. Zein SA, Karakatsanis NA, Issa M, Haj-Ali AA, Nehmeh SA. Physical performance of a long axial field-of-view PET scanner prototype with sparse rings configuration: a Monte Carlo simulation study. Med Phys. 2020;47:1949-57.
  • 10. Karakatsanis NA, Nehmeh MH, Conti M, Bal G, González AJ, Nehmeh SA. Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration. Phys Med Biol. 2022;67:105010.
  • 11. Dadgar M, Parzych S, Baran J, Chug N, Curceanu C, Czerwiński E, et al. Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators. EJNMMI Physics. 2023;62:10.
  • 12. Efthimiou N. New Challenges for PET Image Reconstruction for Total-Body Imaging. PET Clin. 2020;15:453-61.
  • 13. Collarino A, Fuoco V, Arias-Bouda LMP, Sánchez AM, de Geus-Oei LF, Masettiet R, et al. Novel frontiers of dedicated molecular imaging in breast cancer diagnosis. Transl. Cancer Res. 2018;7:S295-S306.
  • 14. Soriano A, Sánchez F, Carrilero V, Pardo A, Vidal San Sebastian LF, Vazquez C, et al. Performance evaluation of the dual ring MAMMI breast PET. IEEE Nuclear Science Symposium and Medical Imaging Conference. IEEE. 2013:1-4.
  • 15. Almeida P, Auffray E, Barbosa J, Bastos AL, Bexiga V, Bugalho R, et al. An overview of the Clear-PEM breast imaging scanner. IEEE Nuclear Science Symposium Conference Record. 2008:5616-8.
  • 16. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P, et al. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50:1666-75.
  • 17. Murthy K, Aznar M, Thompson CJ, Loutfi A , Lisbona R, Gagnon JH. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000;41:1851-8.
  • 18. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the Positron Emission Tomography. Bio-Algorithms and Med-Systems. 2011;7:73-8.
  • 19. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol. 2016;61:2025.
  • 20. Niedwiecki S. Studies of detection of radiation with use of organic scintillator detectors in view of positron emission tomography. master thesis, Jagiellonian University, Cracow, 2011.
  • 21. Pawlik-Niedźwiecka M. Studies of changes of signals shapes in plastic scintillator strips. PhD thesis. master thesis, Jagiellonian University, Cracow, 2014.
  • 22. Shivani. Evaluation of Positron Emission Mammography using plastic scintillator and wavelength shifters. PhD thesis, Jagiellonian University, Cracow, 2023.
  • 23. Niedwiecki S. Double-strip prototype of polymer time-of-flight positron emission tomograph based on multi-level analog electronics. PhD thesis, Jagiellonian University, Cracow, 2019.
  • 24. Kaplon L. Synthesis and Characterization of Polystyrene Scintillators and Their Application in Positron Emission Tomography. PhD thesis. Jagiellonian University, Cracow, 2017.
  • 25. Kapłon Ł. Technical attenuation length measurement of plastic scintillator strips for the total-body J-PET scanner. IEEE Trans. Nucl. Sci. 2020;67:2286-9.
  • 26. Baran J, Chug N, Coussat A, Curceanu C, Czerwiński E, Dadgar M, et al. Comparative studies of plastic scintillator strips with high technical attenuation length for the total-body J-PET scanner. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2023;1051:168186.
  • 27. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2014;764:317-21.
  • 28. Smyrski J, Moskal P, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, et al. Application of WLS strips for position determination in strip PET tomograph based on plastic scintillators. Bio-Algorithms and Med-Systems. 2014;10:59-63.
  • 29. Smyrski J, Alfs D, Bednarski T, Białas P, Czerwiński E, Dulskiet K, et al. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2017;851:39-42.
  • 30. Saint-Gobain [Internet]. Organic scintillation materials [cited 2023 Dec 03]. Available from: http://www.crystals.saint-gobain.com/uploadedFiles/SG-Crystals/Documents/SGC%20Organics%20Brochure.pdf., https://www.luxiumsolutions.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416.
  • 31. Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, et al. Geant4-a simulation toolkit. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2003;506:250-303.
  • 32. Geant4 Collaboration [Internet]. Geant4 User’s Guide for Application Developers [cited 2023 Dec 03]. Available from: http://geant4.web.cern.ch/geant4/support/index.shtml.
  • 33. Brun R, Rademakers F. ROOT - An Object Oriented Data Analysis Framework. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 1997;389:81-6.
  • 34. 3M™ [Internet]. Enhanced Specular Reflector (ESR) [cited 2023 Dec 03]. Available from: https://multimedia.3m.com/mws/media/1389248O/ application-guide-for-esr.pdf.
  • 35. Hamamatsu [cited 2023 Dec 03]. Available from: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s13360_series_kapd1052e.pdf.
  • 36. Shivani S. Development of J-PEM for Breast Cancer Detection, Proc. of the 15th Int. Workshop on Slow Positron Beam Techniques and Applications, Prague, September 2-6, 2019, Acta Phys. Pol. 2020;137:140.
  • 37. Tayefi Ardebili K, Niedźwiecki S, Moskal P. Estimation of 511 keV Gamma Scatter Fraction in WLS Layer in Total-Body J-PET; A Simulation Study. Acta Phys Pol B. 2022;15:4-A7.
  • 38. Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K. et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol. 2021;66:10TR03.
  • 39. Sarrut D, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, et al. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol. 2022;67:184001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32cc8297-d03d-43a6-b1b1-a11150fc2a4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.