PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural and anthropogenic influences on the development of mud depocenters in the southwestern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The morphological evolution of two mud depocenters in the southwestern Baltic Sea is investigated by comparison of numerical model results to geological and oceanographic data. The pathways of dense currents during episodic dense-water inflows from the North Sea are shown to correspond to current pathways inferred from contouritic depositional geometries in the flow-confining channels within the study area. A favorable comparison of model results to published current speed observations shows that the mesoscale dynamics of individual inflow events are reproduced by the model, indicating that external forcing and basin geometry rather than internal dynamics control the mesoscale dynamics of inflow events. The bottom current directions during inflows show high stability in the flow-confining channels and explain the contouritic depositional geometries. Asymmetric depositional features in the channels are qualitatively reproduced in the model. Bottom currents are less stable in areas without contouritic features, possibly resulting in an overall diffusive effect on sediment distribution in those areas. In a simulation of resuspension by bottom-contacting fishing gear, inter-basin sediment transport is increased by 4–30%, depending on the area, compared to the case of natural hydrodynamic resuspension. The model predicts an increased winnowing of the finest sediment fraction due to bottom trawling, leading to an overall coarsening-to-fining trend in the direction of net sediment transport. The results show that rather than hemi-pelagic background sedimentation, episodic events with high bottom current velocities as well as bottom-trawling induced resuspension are responsible for the present-day and future morphological configuration of the mud depocenters in the southwestern Baltic Sea.
Czasopismo
Rocznik
Strony
182--193
Opis fizyczny
Bibliogr. 53 poz., map., rys., tab., wykr.
Twórcy
autor
  • Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
autor
  • Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
  • Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Bibliografia
  • 1. Al-Hamdani, Z.K., Reker, J., Leth, J.O., Reijonen, A., Kotilainen, A.T., Dinesen, G.E., 2007. Development of marine landscape maps for the Baltic Sea and the Kattegat using geophysical and hydrographical parameters. Geol. Surv. Den. Greenl. 13, 61-64. https://doi.org/10.34194/geusb.v13.4977
  • 2. Almroth-Rosell, E., Eilola, K., Hordoir, R., Meier, H.E.M., Hall, P.O., 2011. Transport of fresh and resuspended particulate organic material in the Baltic Sea - a model study. J. Mar. Sys. 87, 1-12. https://doi.org/10.1016/j.jmarsys.2011.02.005
  • 3. Baltic Sea Hydrographic Commission, 2013. Baltic Sea Bathymetry Database version 0.9.3. http://data.bshc.pro/ (accessed 20 April 2020).
  • 4. Bowden, K.F., 1960. The Dynamics of Flow on a Submarine Ridge. Tellus 12, 418-426. https://doi.org/10.1111/j.2153-3490.1960.tb01328.x
  • 5. Bunke, D., Leipe, T., Moros, M., Morys, C., Tauber, F., Virtasalo, J.J., Forster, S., Arz, H.W., 2019. Natural and Anthropogenic Sediment Mixing Processes in the South-Western Baltic Sea. Front. Mar. Sci. 6, 677. https://doi.org/10.3389/fmars.2019.00677
  • 6. Carman, R., Cederwall, H., 2001. Sediments and Macrofauna in the Baltic Sea - Characteristics, Nutrient Contents and Distribution. In: Wulff, F.V., Rahm, L.A., Larsson, P. (Eds.), A Systems Analysis of the Baltic Sea. Springer, Berlin, Heidelberg, 289-327. https://doi.org/10.1007/978-3-662-04453-7_11
  • 7. Christoffersen, P.L., Christiansen, C., Jensen, J.B., Leipe, T., Hille, S., 2007. Depositional conditions and organic matter distribution in the Bornholm Basin. Baltic Sea. Geo-Mar. Lett. 27, 325-338. https://doi.org/10.1007/s00367-007-0054-6
  • 8. Eigaard, O.R., Bastardie, F., Breen, M., Dinesen, G.E., Hintzen, N.T., Laffargue, P., Mortensen, L.O., Nielsen, J.R., Nilsson, H.C., O’Neill, F.G., Polet, H., Reid, D.G., Sala, A., Sköld, M., Smith, C., Sørensen, T.K., Tully, O., Zengin, M., Rijnsdorp, A.D., 2016. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73, i27-i43. https://doi.org/10.1093/icesjms/fsv099
  • 9. EMODnet Bathymetry Consortium, 2020. EMODnet Digital Bathymetry (DTM). https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649cea9881a
  • 10. Ferré, B., Durrieu de Madron, X., Estournel, C., Ulses, C., Le Corre, G., 2008. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 28, 2071-2091. https://doi.org/10.1016/j.csr.2008.02.002
  • 11. Gingele, F.X., Leipe, T., 2001. Southwestern Baltic Sea - A sink for suspended matter from the North Sea? Geology 29, 215. https://doi.org/10.1130/0091-7613(2001)029〈0215:SBSASF〉2.0.CO;2
  • 12. Harff, J., Endler, R., Emelyanov, E.M., Kotov, S., Leipe, T., Moros, M., Olea, R., Tomczak, M., Witkowski, A., 2011. Late Quaternary Climate Variations Reflected in Baltic Sea Sediments. In: Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin. Springer, Berlin, Heidelberg, 99-132. https://doi.org/10.1007/978-3-642-17220-5_5
  • 13. Harris, P.T., Pattiaratchi, C.B., Cole, A.R., Keene, J.B., 1992. Evolution of subtidal sandbanks in Moreton Bay, eastern Australia. Mar. Geol. 103, 225-247. https://doi.org/10.1016/0025-3227(92)90018-D
  • 14. Hernández-Molina, F.J., Wåhlin, A., Bruno, M., Ercilla, G., Llave, E., Serra, N., Rosón, G., Puig, P., Rebesco, M., van Rooij, D., Roque, D., González-Pola, C., Sánchez, F., Gómez, M., Preu, B., Schwenk, T., Hanebuth, T.J., Sánchez Leal, R.F., García-Lafuente, J., Brackenridge, R.E., Juan, C., Stow, D.A.V., Sánchez-González, J.M., 2016. Oceanographic processes and morphosedimentary products along the Iberian margins: A new multidisciplinary approach. Mar. Geol. 378, 127-156. https://doi.org/10.1016/j.margeo.2015.12.008
  • 15. ICES, 2019. HELCOM request 2017 for spatial data layers of fishing intensity/pressure. https://doi.org/10.17895/ices.data.4684
  • 16. Jönsson, A., Danielsson, ˚A., Rahm, L., 2005. Bottom type distribution based on wave friction velocity in the Baltic Sea. Cont. Shelf Res. 25, 419-435. https://doi.org/10.1016/j.csr.2004.09.011
  • 17. Kostecki, R., Moska, P., 2017. Baltic Sea Holocene evolution based on OSL and radiocarbon dating: Evidence from a sediment core from the Arkona Basin (the southwestern Baltic Sea). Oceanol. Hydrobiol. St. 46, 48. https://doi.org/10.1515/ohs-2017-0031
  • 18. Kroodsma, D.A., Mayorga, J., Hochberg, T., Miller, N.A., Boerder, K., Ferretti, F., Wilson, A., Bergman, B., White, T.D., Block, B.A., Woods, P., Sullivan, B., Costello, C., Worm, B., 2018. Tracking the global footprint of fisheries. Science 359, 904-908. https://doi.org/10.1126/science.aao5646
  • 19. Kunzendorf, H., Larsen, B., 2009. Environmental changes in the Bornholm Basin as deduced from the geochemistry of short and long sediment cores. Baltica 22, 101-110.
  • 20. Laanaia, N., Wirth, A., Molines, J.M., Barnier, B., Verron, J., 2010. On the numerical resolution of the bottom layer in simulations of oceanic gravity currents. Ocean Sci. 6, 563-572. https://doi.org/10.5194/os-6-563-2010
  • 21. Larsen, B., Kögler, F.-C., 1975. A submarine channel between the deepest parts of the Arkona and the Bornholm basins in the Baltic Sea. Dtsch. Hydrogr. Z. 28, 274-276. https://doi.org/10.1007/BF02225971
  • 22. Lass, H.U., Mohrholz, V., 2003. On dynamics and mixing of inflowing saltwater in the Arkona Sea. J. Geophys. Res. Oceans 108. https://doi.org/10.1029/2002JC001465
  • 23. Leipe, T., Harff, J., Meyer, M., Hille, S., Pollehne, F., Schneider, R., Kowalski, N., Brügmann, L., 2008. Sedimentary records of environmental changes and anthropogenic impacts during the past decades. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and evolution of the Baltic Sea, 1952-2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley & Sons, 395-439.
  • 24. Leipe, T., Moros, M., Kotilainen, A.T., Vallius, H., Kabel, K., Endler, M., Kowalski, N., 2013. Mercury in Baltic Sea sediments - natural background and anthropogenic impact. Chem. Erde-Geochem. 73, 249-259. https://doi.org/10.1016/j.chemer.2013.06.005
  • 25. Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B., Garlan, T., 2016. Influence of bottom trawling on sediment resuspension in the ‘Grande-Vasière’ area (Bay of Biscay, France). Ocean Dynam. 66, 1181-1207. https://doi.org/10.1007/s10236-016-0974-7
  • 26. Mengual, B., Le Hir, P., Cayocca, F., Garlan, T., 2019. Bottom trawling contribution to the spatio-temporal variability of sediment fluxes on the continental shelf of the Bay of Biscay (France). Mar. Geol. 414, 77-91. https://doi.org/10.1016/j.margeo.2019.05.009
  • 27. Mulder, T., Hassan, R., Ducassou, E., Zaragosi, S., Gonthier, E., Hanquiez, V., Marchès, E., Toucanne, S., 2013. Contourites in the Gulf of Cadiz: a cautionary note on potentially ambiguous indicators of bottom current velocity. Geo-Mar. Lett. 33, 357-367. https://doi.org/10.1007/s00367- 013- 0332-4
  • 28. O’Neill, F.G., Summerbell, K., 2011. The mobilisation of sediment by demersal otter trawls. Mar. Pollut. Bull. 62, 1088-1097. https://doi.org/10.1016/j.marpolbul.2011.01.038
  • 29. Oberle, F.K.J., Puig, P., Martín, J., 2018. Fishing Activities. In: Micallef, A., Krastel, S., Savini, A. (Eds.), Submarine Geomorphology. Springer International Publishing, Cham, 503-534. https://doi.org/10.1007/978-3-319-57852-1_25
  • 30. Oberle, F.K.J., Storlazzi, C.D., Hanebuth, T.J., 2016a. What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Sys. 159, 109-119. https://doi.org/10.1016/j.jmarsys.2015.12.007
  • 31. Oberle, F.K.J., Swarzenski, P.W., Reddy, C.M., Nelson, R.K., Baasch, B., Hanebuth, T.J., 2016b. Deciphering the lithological consequences of bottom trawling to sedimentary habitats on the shelf. J. Mar. Sys. 159, 120-131. https://doi.org/10.1016/j.jmarsys.2015.12.008
  • 32. O’Neill, F.G., Ivanovi´c, A., 2016. The physical impact of towed demersal fishing gears on soft sediments. ICES J. Mar. Sci. 73, i5-i14. https://doi.org/10.1093/icesjms/fsv125
  • 33. Palanques, A., Puig, P., Guillén, J., Demestre, M., Martín, J., 2014. Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean). Cont. Shelf Res. 72, 83-98. https://doi.org/10.1016/j.csr.2013.10.008
  • 34. Pattiaratchi, C., Collins, M., 1987. Mechanisms for linear sandbank formation and maintenance in relation to dynamical oceanographic observations. Progr. Oceanogr. 19, 117-176. https://doi.org/10.1016/0079-6611(87)90006-1
  • 35. Payo-Payo, M., Jacinto, R.S., Lastras, G., Rabineau, M., Puig, P., Martin, J., Canals, M., Sultan, N., 2017. Numerical modeling of bottom trawling-induced sediment transport and accumulation in La Fonera submarine canyon, northwestern Mediterranean Sea. Mar. Geol. 386, 107-125. https://doi.org/10.1016/j.margeo.2017.02.015
  • 36. Piechura, J., Beszczynska-Möller, A., 2004. Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations. Oceanologia 46 (1), 113-141. Pinto, L., Fortunato, A.B., Zhang, Y.J., Oliveira, A., Sancho, F.E., 2012. Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments. Ocean Model. 57, 1-14. https://doi.org/10.1016/j.ocemod.012.08.005
  • 37. Porz, L., Zhang, W., Hanebuth, T.J., Schrum, C., 2021a. Physical processes controlling mud depocenter development on continental shelves - Geological, oceanographic, and modeling concepts. Mar. Geol. 432, 106402. https://doi.org/10.1016/j.margeo.2020.106402
  • 38. Porz, L., Zhang, W., Schrum, C., 2021b. Density-driven bottom currents control development of muddy basins in the southwestern Baltic Sea. Mar. Geol. 438, 106523. https://doi.org/10.1016/j.margeo.2021.106523
  • 39. Poulos, S., 2001. The contribution of near-bed currents to modern sedimentation processes in the deep waters of the Hellenic Arc-Trench system, eastern Mediterranean. Geo-Mar. Lett. 20, 201-208. https://doi.org/10.1007/s003670000057
  • 40. Puig, P., Canals, M., Company, J.B., Martín, J., Amblas, D., Lastras, G., Palanques, A., Calafat, A.M., 2012. Ploughing the deep sea floor. Nature 489, 286-289. https://doi.org/10.1038/nature11410
  • 41. Ramster, J.W., Hughes, D.G., Furnes, G.K., 1978. A ‘steadiness’ factor for estimating the variability of residual drift in current meter records. Dtsch. Hydrogr. Z. 31, 230-236.
  • 42. Rebesco, M., Hernández-Molina, F.J., van Rooij, D., Wåhlin, A., 2014. Contourites and associated sediments controlled by deepwater circulation processes: State-of-the-art and future considerations. Mar. Geol. 352, 111-154. https://doi.org/10.1016/j.margeo.2014.03.011
  • 43. Sayin, E., Krauss, W., 1996. A numerical study of the water exchange through the Danish Straits. Tellus A 48, 324-341. https://doi.org/10.1034/j.1600-0870.1996.t01-1-00009.x
  • 44. Seifert, T., Tauber, F., Kayser, B., 2001. A high resolution spherical grid topography of the Baltic Sea—revised edition, In: Baltic Sea Science Congress, Stockholm 25-29. November 2001, Poster #147.
  • 45. Shanmugam, G., 2017. Chapter 9 - The Contourite Problem. In: Mazumder, R. (Ed.), Sediment Provenance. Elsevier, 183-254. https://doi.org/10.1016/B978-0-12-803386-9.00009-5
  • 46. Sivkov, V., Gorbatskiy, V., Kuleshov, A., Zhurov, Y., 2002. Muddy contourites in the Baltic Sea: an example of a shallow-water contourite system. Geo. Soc. Mem. 22, 121-136. https://doi.org/10.1144/GSL.MEM.2002.022.01.10
  • 47. Sivkov, V., Sviridov, N., 1994. The relation between erosional-accumulative forms of bottom relief and near-bottom currents in the Bornholm deep. Oceanologiya (English Translation) 266-270.
  • 48. Stow, D.A.V., Faugères, J.-C., Howe, J.A., Pudsey, C.J., Viana, A.R., 2002. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art. Geo. Soc. Mem. 22, 7-20. https://doi.org/10.1144/GSL.MEM.2002.022.01.02
  • 49. Stow, D.A.V., Smillie, Z., 2020. Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites. Geosciences 10. https://doi.org/10.3390/geosciences10020068
  • 50. Wilckens, H., Miramontes, E., Schwenk, T., Artana, C., Zhang, W., Piola, A.R., Baques, M., Provost, C., Hernández-Molina, F.J., Felgendreher, M., Spieß, V., Kasten, S., 2021. The erosive power of the Malvinas Current: Influence of bottom currents on morpho-sedimentary features along the northern Argentine margin (SW Atlantic Ocean). Mar. Geol. 439, 106539. https://doi.org/10.1016/j.margeo.2021.106539
  • 51. Winterwerp, J.C., van Kesteren, W.G.M., van Prooijen, B., Jacobs, W., 2012. A conceptual framework for shear flow—induced erosion of soft cohesive sediment beds. J. Geophys. Res. Oceans 117. https://doi.org/10.1029/2012JC008072
  • 52. Zhang, W., Hanebuth, T.J., Stöber, U., 2016a. Short-term sediment dynamics on a meso-scale contourite drift (off NW Iberia): Impacts of multi-scale oceanographic processes deduced from the analysis of mooring data and numerical modelling. Mar. Geol. 378, 81-100. https://doi.org/10.1016/j.margeo.2015.12.006
  • 53. Zhang, Y.J., Ye, F., Stanev, E.V., Grashorn, S., 2016b. Seamless cross-scale modeling with SCHISM. Ocean Model. 102, 64-81. https://doi.org/10.1016/j.ocemod.2016.05.002
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32cc7f36-bd20-48f5-82f1-1d4632323c03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.