PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Geometric Properties of a Jet Engine Fan Blades Based on Modal Vibration Testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an experimental method of determining the geometric properties of jet engine rotor airfoils based on modal vibration testing. The procedure is based on adjusting the results of analytical calculations to the laboratory outcomes. Experimental tests were carried out on a set of 20 jet engine fan blades made of AL7022-T6 aluminium alloy. Each blade differed in weight and geometric dimensions within the accepted design tolerance. Numerical analysis of five airfoils that differed in thickness was performed. Modal vibration test results were summarised and compared with the results obtained by the numerical method. The comparison revealed a high similarity of the frequency and form of vibrations acquired by numerical simulation for each of the blades in relation to the executed vibration testing. Based on the verification of the theoretical model with the results obtained through experimental testing, conclusions were drawn about the object’s dynamic behaviour and its technological quality and geometric properties, whereby each of airfoil was probably thinned.
Słowa kluczowe
Rocznik
Strony
56--74
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Baker Hughes Poland, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
  • [1] Sun, X., Xu, D. and Sun, D. “Recent Development of Casing Treatments for Aeroengine Compressors.” Chinese Journal of Aeronautics Vol. 32 (2019): pp. 1-36. DOI: 10.1016/j.cja.2018.11.005.
  • [2] Farid, A.M. and Adnan, Elshafei M. “Finite Element Analysis of Compressor Blades Under Extension, Bending and Torsion Loads.” Proceeding of the 12-th ASAT Conference, 29-31 May 2007, MTC, Cario. DOI: 10.21608/asat.2007.24386.
  • [3] Fu, Xi, Ma, Chao, Jiewei Lin and Junhong Zhang. “Numerical Study on Vibration Response and Fatigue Damage of Axial Compressor Blade Considering Aerodynamic Excitation.” Metals Vol. 11 (2021): p. 1835. DOI: 10.3390/met11111835.
  • [4] Tsymbalyuk, V. and Linhart, J. Corrections of Aerodynamic Loadings Measurement on Airfoil Cascade at Bending Torsion Vibrations - XVII IMEKO Congress, Dubrovnik, Croatia, pp. 358-361, June 22-27, 2003.
  • [5] Zbigniew, L. Kowalewski - Zmęczenie Materiałów - Podstawy, Kierunki Badań, Ocena Stanu Uszkodzenia, XVII Seminarium Nieniszczące Badania Materiałów, Zakopane (8-11 marca 2011).
  • [6] Witoś, Mirosław. “Zwiększenie żywotności silników turbinowych poprzez aktywne diagnozowanie i sterowanie.” Prace Naukowe Instytutu Technicznego Wojsk Lotniczych, (2011); nr 29: pp. 3-324.
  • [7] Tommy J. George, Herman Shen, M.H., Onome Scott-Emuakpor, Theodore Nicholas, Charles J. Cross and Jeffrey Calcaterra. “Goodman Diagram Via Vibration-Based Fatigue Testing.” Journal of Engineering Materials and Technology Vol. 129 (2005): pp. 58-64. DOI: 10.1115/1.1836791.
  • [8] Natke, H.G. and Cempel, C. “Model Aided Diagnosis Based on Symptoms.” International Conference on Damage Assessment of Structures J. M. Dulieu-Smith W. J. Staszewski and K. Worden. 1997. Structural Damage Assessment Using Advanced Signal Processing Procedures: Proceedings of DAMAS ‘97, University of Sheffield, UK, pp. 363-375, 30 June-2 July 1997. Sheffield Academic Press.
  • [9] Lay Menn Khoo, P. Raju Mantena and Prakash Jadhav. “Structural Damage Assessment Using Vibration Modal Analysis.” Structural Health Monitoring Vol. 3 (2004): p. 177. DOI: 10.1177/1475921704042680.
  • [10] Zimmerman, D.C., Smith, S.W., Kim, H.M. and Bartkowicz, T.J. “Spacecraft Applications for Damage Detection Using Vibration Testing.” Proceedings of the 14th International Modal Analysis Conference Vol. 1 (1996): pp. 851-856.
  • [11] Witoś, Mirosław. “On the Modal Analysis of A Cracking Compressor Blade.” Research Works of Air Force Institute of Technology No. 23 (2008): pp. 21-36. DOI: 10.2478/v10041-008-0016-0.
  • [12] Jerzy Madej, Marek Sitek. “Analiza Modalna i Harmoniczna Modelu Zespołu Elektrowibratora Przy Różnej Konfiguracji Ciężarów.” Acta Mechanica et Automatica Vol. 5, No. 3 (2011): 87-90.
  • [13] Wiesław Krzymień. “Identyfikacja nieliniowych drgań konstrukcji lotniczych.” Seria Monograficzna: Biblioteka Naukowa Instytutu Lotnictwa, nr 58, (2019). ISBN 978-83-63539-52-8.
  • [14] Gloth, G. and Sinapius, M. Analysis of Swept-Sine Runs During Modal Identification.” Mechanical Systems and Signal Processing (2004); 18 (6): pp. 1421-1441. DOI: 10.1016/S0888-3270(03)00087-6.
  • [15] Tadeusz Uhl. “Zastosowanie analizy modalnej w diagnostyce maszyn.” Diagnostyka Vol. 23 (2000): pp. 82-87.
  • [16] Matsuo M., Yasui T., Inamura T. and Matsumura M. “High-Speed test of thermal effects for a Machine-tool Structure Based on Modal Analysis.” Precision Engineering (1986); 8 (2): pp. 72-78. DOI: 10.1016/0141-6359(86)90089-9.
  • [17] Li, Bin, Cai, Hiu, Mao, Xinyong, Huang, Junbin and Luo, Bo “Estimation of CNC Machine-tool Dynamic Parameters Based on Random Cutting Excitation Through Operational Modal Analysis.” International Journal of Machine Tools & Manufacture (2013) 71: pp. 26-40. DOI: 10.1016/j.ijmachtools.2013.04.001.
  • [18] Zaghbani, I. and Songmene, V. “Estimation of Machine-tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis.” International Journal of Machine Tools & Manufacture (2009), 49 (12-13): pp. 947-957. DOI: 10.1016/j.ijmachtools.2009.06.010.
  • [19] Zhang, G.P., Huang, Y.M., Shi, W.H. and Fu, W.P. “Predicting Dynamic Behaviors of a Whole Machine Tool Structure Based on Computer-aided Engineering.” International Journal of Machine Tools & Manufacture (2003); 43 (7): pp. 699-706. DOI: 10.1016/S0890-6955(03)00026-9.
  • [20] Gagnol, V., Le, T.P. and Ray, P. “Modal Identification of Spindle-tool Unit in High-speed Machining.” Mechanical Systems and Signal Processing (2011); 25 (7): pp. 2388-2398. DOI:10.1016/j.ymssp.2011.02.019.
  • [21] Vivo, A., Brutti, C. and Leofanti, J. “Modal Shape Identification of Large Structure Exposed to Wind Excitation by Operational Modal Analysis Technique.” Mechanical Systems and Signal Processing (2013); 39 (1-2) pp. 195-206. DOI: 10.1016/j.ymssp.2013.03.025.
  • [22] Rahmatalla, S., Hudson, K., Liu, Y. and Eun, H.Ch. “Finite Element Modal Analysis and Vibration-waveforms in Health Inspection of Old Bridges.” Finite Elements in Analysis and Design (2014); 78: pp. 40-46. DOI: 10.1016/j.finel.2013.09.006.
  • [23] Maria Virginia Gelfuso, Daniel Thomazini, Júlio César Silva de Souza and José Juliano de Lima Junior. “Vibrational Analysis of Coconut Fiber-PP.” Composites. Materials Research 2014, 17 (2), 367-372. DOI: http://dx.doi.org/10.1590/S1516-14392013005000200.
  • [24] de Silva, C. Vibration and Shock Handbook. Taylor & Francis, Boca Raton (2005).
  • [25] “Modal Analysis of a Flat Plate” Available at: https://www.yumpu.com/en/document/read/24181727/1-modal-analysis-of-a-flat-plate-scc.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32ca972a-75fc-4161-a78b-99ecb3cbd64c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.