PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normal structure in modulated topological vector spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Following the author’s recent paper On modulated topological vector spaces and applications, Bull. Aust. Math. Soc. (2020), we discuss a notion of modulated topological vector spaces, that generalise, among others, Banach spaces and modular function spaces. The interest in modulars reflects the fact that the notions of “norm like” but “non-euclidean” (i.e., possibly without the triangle property and non-necessarily homogenous) constructs to measure a level of proximity between complex objects have been used extensively in statistics and applied in many empirical scientific projects requiring an objective differentiation between several classes of objects, efficiently applied in many modern clustering and Artificial Intelligence (AI) related computer algorithms. As an example of application, we prove some results, which extend fixed point theorems from the above mentioned paper, by moving from the setting of admissible sets to a simpler and more general setup, which covers also closed bounded sets. The theory of modulated topological vector spaces provides a very minimalistic framework, where powerful geometrical, fixed point, approximation and optimisation theorems are valid under a bare minimum of assumptions.
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
Bibliografia
  • [1] D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), no. 3, 423-424, DOI 10.2307/2043954.
  • [2] B. A. Bin Dehaish and M. A. Khamsi, On monotone mappings in modular function spaces, J. Nonlinear Sci. Appl. 9 (2016), no. 8, 5219-5228, DOI 10.22436/jnsa.009.08.07.
  • [3] Z. Dzwonko and W. M. Kozlowski, Principal coordinates analysis and its application in synecology, Wiad. Ekol. 26 (1980), no. 3, 265-277.
  • [4] A. L. Garkavi, On the optimal net and best cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106.
  • [5] A. A. Gillespie and B. B. Williams, Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure, Applicable Anal. 9 (1979), no. 2, 121-124, DOI 10.1080/00036817908839259.
  • [6] J. C. Gower, Multivariate analysis and multidimensional geometry, The Statistician 17 (1967), 13-28.
  • [7] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces WMk (Ω), Comment. Math. 21 (1980), no. 2, 315-324.
  • [8] M. A. Khamsi, W. M. Kozłowski, and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. 14 (1990), no. 11, 935-953, DOI 10.1016/0362-546X(90)90111-S.
  • [9] M. A. Khamsi and W. M. Kozlowski, On asymptotic pointwise contractions in modular function spaces, Nonlinear Anal. 73 (2010), no. 9, 2957-2967, DOI 10.1016/j.na.2010.06.061.
  • [10] M. A. Khamsi and W. M. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J. Math. Anal. Appl. 380 (2011), no. 2, 697-708, DOI 10.1016/j.jmaa.2011.03.031.
  • [11] M. A. Khamsi and W. M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Cham Heidelberg New York Dordrecht, London 2015, DOI 10.1007/978-3-319-14051-3.
  • [12] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006, DOI 10.2307/2313345.
  • [13] W. A. Kirk, Nonexpansive mappings in metric and Banach spaces, Rend. Sem. Mat. Fis. Milano 51 (1981), 133-144 (1983), DOI 10.1007/BF02924816 (English, with Italian summary).
  • [14] W. M. Kozłowski, Notes on modular function spaces. I, Comment. Math. 28 (1988), no. 1, 87-100.
  • [15] W. M. Kozłowski, Notes on modular function spaces. II, Comment. Math. 28 (1988), no. 1, 101-116.
  • [16] W. M. Kozlowski, Modular function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 122, Marcel Dekker, Inc., New York 1988.
  • [17] W. M. Kozlowski, On nonlinear differential equations in generalized Musielak-Orlicz spaces, Comment. Math. 53 (2013), no. 2, 113-133.
  • [18] W. M. Kozlowski, On modulated topological vector spaces and applications, Bull. Aust. Math. Soc. 101 (2020), no. 2, 325-332, DOI 10.1017/s0004972719000716.
  • [19] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin 1983, DOI 10.1007/BFb0072210.
  • [20] J. Musielak and W. Orlicz, On generalized variations. I, Studia Math. 18 (1959), 11-41, DOI 10.4064/sm-18-1-11-41.
  • [21] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo 1950.
  • [22] W. Oettli and M. Théra, Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc. 48 (1993), no. 3, 385-392, DOI 10.1017/S0004972700015847.
  • [23] B. Sims, A class of spaces with weak normal structure, Bull. Austral. Math. Soc. 49 (1994), no. 3, 523-528, DOI 10.1017/S0004972700016634.
  • [24] B. Turett, Fenchel-Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 181 (1980), 55.
  • [25] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Studies in Applied Mathematics 3 (1924), 73-94, DOI 10.1002/sapm19243272.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32c9d311-90db-44b6-971b-7c2c926117a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.