PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of recent airborne gravity and magnetic data for the interpretation of basement structures underneath the south–western Benue trough using source edge detector filters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the detail basement and trends of geological structures associated with the Mesozoic-Cenozoic volcanism in the south–western region of the Nigerian Benue trough using recent gravity and magnetic anomalies of the region. The analysis aimed at recognizing and mapping the basement structure that controlled the distribution and source host of hydrocarbon and other economic mineral resources in the region. The structural recognition and mapping is done on the basis of the utilization of the Tilt Angle (TA) and Total Horizontal Derivative of the Tilt Angle (THDTA) of gravity and magnetic data. From these techniques, we have been able to identify and mapped out those edges of anomalous sources due to the gravity and magnetic data that are in association with the basement geological structures of the area. Based on the mapped structural trends, it is observed that the basement structures derived from both the gravity and magnetic anomalies correlated well with the zones of volcanic rocks around Gboko and area between Lefin and Oturkpo. The two locations are sitting over gravity and magnetic highs suggesting high density and susceptibility material below the subsurface. The Euler deconvolution method suggested depths between 1 and 5 km from both gravity and magnetic data. Deeper basement of anomalous sources are suggested between 3 and 5 km. The 1 km depth interprets the regions of basement highs or corresponding to intrusive zones.
Czasopismo
Rocznik
Strony
1595--1606
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Physics Unit, Department of Science Laboratory Technology, Modibbo Adama University, Yola P.M.B. 2076, Nigeria
autor
  • CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
  • Physics Unit, Department of Science Laboratory Technology, Modibbo Adama University, Yola P.M.B. 2076, Nigeria
  • Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
  • Nigerian Geological Survey Agency (NGSA), Abuja Office, Abuja, Nigeria
Bibliografia
  • 1. Abdelrahman EM, El-Araby HM, El-Araby TM, Essa KS (2003a) A least-squares minimization approach to depth determination from magnetic data. Pure Appl Geophys 160:1259–1271
  • 2. Abdelrahman EM, El-Araby TM, Essa KS (2003b) Shape and depth solutions from third moving average residual gravity anomalies using the window curves method. Kuwait J Sci Eng 30:95–108
  • 3. Abdelrahman EM, El-Araby TM, Essa KS (2003c) A least-squares minimisation approach to depth, index parameter, and amplitudę coefficient determination from magnetic anomalies due to thin dykes. Explor Geophys 34:241–248
  • 4. Abdelrahman EM, Abo-Ezz ER, Essa KS, El-Araby TM, Soliman KS (2007) A new least-squares minimization approach to depth and shape determination from magnetic data. Geophys Prospect 55:433–446
  • 5. Abdullahi M, Kumar R (2020) Curie depth estimated from high-resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria). Acta Geod Geoph 55(4):627–643
  • 6. Abdullahi M, Kumar R (2021) Basement and structure near the south-western margin of the lower Benue trough between, and including, the Anambra Basin and Afikpo Syncline, as derived from aeromagnetic and gravity data. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02801-3
  • 7. Abdullahi M, Singh UK (2018) Basement geology derived from gravity anomalies beneath the Benue trough of Nigeria. Arab J Geosci 11:694
  • 8. Abdullahi M, Singh UK, Roshan R (2019a) Mapping magnetic lineaments and subsurface basement beneath parts of lower Benue trough (LBT), Nigeria: insights from integrating gravity, magnetic and geologic data. J Earth Syst Sci 128:17
  • 9. Abdullahi M, Kumar R, Singh UK (2019b) Magnetic basement depth from high-resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria) using scaling spectral method. J Afr Earth Sci 150:337–345
  • 10. Abdullahi M, Singh UK, Modibbo UM (2019c) Crustal structure of southern Benue trough, Nigeria from 3D inversion of gravity data. J Geol Min Res 11(4):39–47
  • 11. Adighije C (1981) A gravity interpretation of the Benue trough, Nigeria. Tectonophysics 79:109–128
  • 12. Agagu OK, Adighije CI (1983) Tectonic and sedimentation framework of the lower Benue trough, southeastern Nigeria. J Afr Earth Sci 1(3/4):267–274
  • 13. Ajayi CO, Ajakaiye DE (1981) The origin and perculiarities of the Nigerian Benue trough: another look from recent gravity data obtained from middle Benue. Tectonophysics 80:285–303
  • 14. Ajayi CO, Ajakaiye DE (1986) Structures deduced from gravity data in the middle Benue trough, Nigeria. J Afr Earth Sci 5:359–369
  • 15. Anudu GK, Stephenson RA, Macdonald DIM (2014) Using high-resolution aeromagnetic data to recognize and map intra-sedimentary volcanic rocks and geological structures across the cretaceous middle Benue trough, Nigeria. J Afr Earth Sci 99:625–636
  • 16. Benkhelil J (1989) The origin and evolution of the cretaceous Benue trough (Nigeria). J Afr Earth Sci 6:251–282
  • 17. Brethes A, Guarnieri P, Rasmussen TM, Bauer TE (2018) Interpretation of aeromagnetic data in the jameson land basin, central east greenland: structures and related mineralized systems. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.01.008
  • 18. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32(10):1585–1591
  • 19. Essa KS, Diab ZE (2022) Source parameters estimation from gravity data using bat algorithm with application to geothermal and volcanic activity. Intl J Environ Sci Tech. https://doi.org/10.1007/s13762-022-04263-z
  • 20. Essa KS, Géraud Y (2020) Parameters estimation from the gravity anomaly caused by the two-dimensional horizontal thin sheet applying the global particle swarm algorithm. J Petrol Sci Eng 193:107421
  • 21. Essa KS, Nady AG, Mostafa MS, Elhussein M (2018) Implementation of potential field data to depict the structural lineaments of the Sinai Peninsula. Egypt J Afr Earth Sci 147:43–53
  • 22. Essa KS, Abo-Ezz ER, Géraud Y, Diraison M (2022) A full interpretation applying a metaheuristic particle swarm for gravity data of an active mud diaper SW Taiwan. J Petrol Sci Eng 215:110683
  • 23. Farrington JL (1952) A preliminary description of the Nigerian lead-zinc field. Econ Geol 47:583–608
  • 24. Idi BY, Maiha AI, Abdullahi M (2022) Spatial mapping and monitoring thermal anomaly and radiative heat flux using Landsat-8 thermal infrared data-a case study of Lamude hot spring, upper part of Benue trough. Nigeria. J Appl Geophys 203:104654
  • 25. Keating PB (1998) Weighted Euler deconvolution of gravity data. Geophysics 63:1595–1603
  • 26. King LC (1950) Outline and disruption of Gondwanaland. Geol Mag 87:353–359
  • 27. Maluski H, Coulon C, Popoff M, Baudin P (1995) 40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue trough, Nigeria. J Geol Soc 152:311–326
  • 28. Miller HG, Singh V (1994) Potential field tilt—a new concept for location of potential field sources. J Appl Geophys 32:213–217
  • 29. Nwachukwu SO (1972) The tectonic evolution of the southern portion of the Benue trough Nigeria. Geol Mag 109:411–419
  • 30. Ofoegbu CO (1984) Interpretation of aeromagnetic anomalies over lower and middle Benue trough of Nigeria. Geophys J Roy Astro Soc 79:813–823
  • 31. Ofoegbu CO (1985) A review of the geology of the Benue trough Nigeria. J Afr Earth Sci 3(3):283–291
  • 32. Ofoegbu CO, Onuoha KM (1991) Analysis of magnetic data over the Abakaliki Anticlinorium of the lower Benue trough, Nigeria. Mar Petrol Geol 8:174–183
  • 33. Ogungbesan GO, Adedosu TA (2019) Geochemical record for the depositional condition and petroleum potential of the late cretaceous mamu formation in the western flank of anambra basin. Green Energy Environ. https://doi.org/10.1016/j.gee.2019.01.008
  • 34. Olade MA (1978) Early Cretaceous basalt volcanism and initial continental rifting in Benue trough, Nigeria. Nature 273:458–559
  • 35. Oruc B (2011) Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia region, Turkey. Pure Appl Geophys 168:1769–1780
  • 36. Reid AB, Thurston JB (2014) The structural index in gravity and magnetic interpretation: errors, uses, and abuses. Geophysics 79(4):J61–J66
  • 37. Reid AB, Allsop JM, Granser H, Miliett AJ, Somerton WI (1990) Magnetic interpretations in three dimensions using Euler deconvolution. Geophysics 55:80–91
  • 38. Reid AB (1995) Euler deconvolution: past, present, and future: a review. Tulsa: extended abstract of the 65th annual meeting of the society of exploration geophysics. 272–273
  • 39. Salem A, Williams S, Fairhead D, Smith R, Ravat D (2008) Interpretation of magnetic data using tilt-angle derivatives. Geophysics 73:L1–L10
  • 40. Teknik V, Thybo H, Artemieva IM, Ghods A (2020) A new tectonic map of the Iranian plateau based on aeromagnetic identification of magmatic arcs and ophiolite belts. Tectonophysics 792:228588
  • 41. Uzuakpunwa AB (1974) The Abakaliki pyroclastics, Eastern Nigeria, new age and tectonic implications. Geol Mag 111:65–70
  • 42. Verduzco B, Fairhead JD, Green CM, Mackenzie C (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23:116–119
  • 43. Wright JB (1968) South Atlantic continental drift and the Benue Trough. Tectonophysics 6:301–310
  • 44. Wright JB (1976) Origins of the Benue trough–a critical reviews. In: Kogbe CA (ed) Geology of Nigeria. Elizabethan publication co., Lagos, pp 313–318
  • 45. Wright JB (1989) Volcanic rocks in Nigeria. In: Kogbe CA (ed) Geology of Nigeria, 2nd edn. Rock View Nigeria Ltd., Jos, pp 125–174
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32c6b868-4dff-4aaa-a6d4-44b700c9bfd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.