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Abstract

In this paper we introduce an online algorithm that uses integral reinforcement knowl-

edge for learning the continuous-time zero sum game solution for nonlinear systems with

infinite horizon costs and partial knowledge of the system dynamics. This algorithm

is a data based approach to the solution of the Hamilton-Jacobi-Isaacs equation and it

does not require explicit knowledge on the system’s drift dynamics. A novel adaptive

control algorithm is given that is based on policy iteration and implemented using an ac-

tor/disturbance/critic structure having three adaptive approximator structures. All three

approximation networks are adapted simultaneously. A persistence of excitation condi-

tion is required to guarantee convergence of the critic to the actual optimal value function.

Novel adaptive control tuning algorithms are given for critic, disturbance and actor net-

works. The convergence to the Nash solution of the game is proven, and stability of the

system is also guaranteed. Simulation examples support the theoretical result.

1 Introduction

The H∞ control problem is a minimax optimization

problem [3], and hence a zero-sum game where the

controller is a minimizing player and the distur-

bance a maximizing one.

Game theory [1] and H-infinity solutions rely

on solving the Hamilton-Jacobi-Isaacs (HJI) equa-

tions, which in the zero-sum linear quadratic case

reduce to the generalized game algebraic Riccati

equation (GARE). In the nonlinear case the HJI

equations are difficult or impossible to solve, and

may not have global analytic solutions even in sim-

ple cases (e.g. scalar system, bilinear in input and

state). Solution methods are generally offline.

In this paper we use Reinforcement Learning

(RL) [10] methods, specifically a new Integral Re-

inforcement Learning (IRL) approach, to provide a

learning algorithm for the solution of two-player

zero-sum infinite horizon games online. This al-

gorithm does not need any knowledge of the drift

dynamics of the system. A novel adaptive control

technique is given that is based on reinforcement

learning techniques, whereby the control and dis-

turbance policies are tuned online using data gener-

ated in real time along the system trajectories. Also

tuned is a ‘critic’ approximator structure whose

function is to identify the value or outcome of the

current control and disturbance policies. Based on

this value estimate, the policies are continuously

updated. This is a sort of indirect adaptive control

algorithm, yet, due to the direct form dependence

of the policies on the learned value, it is affected

online as direct (‘optimal’) adaptive control.

Reinforcement learning (RL) is a class of meth-

ods used in machine learning to methodically mod-

ify the actions of an agent based on observed re-

sponses from its environment [11, 12, 14, 16]. The

RL methods have been developed starting from

learning mechanisms observed in mammals. Ev-

–332
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ery decision-making organism interacts with its en-

vironment and uses those interactions to improve

its own actions in order to maximize the positive ef-

fect of its limited available resources; this in turn

leads to better survival chances. RL is a means

of learning optimal behaviors by observing the re-

sponse from the environment to non-optimal con-

trol policies. In engineering termsPersonName, RL

refers to the learning approach of an actor or agent

which modifies its actionsPersonName, or control

policiesPersonName, based on stimuli received in

response to its interaction with its environment.

In view of the advantages offered by the RL

methodsPersonName, a recent objective of control

systems researchers is to introduce and develop RL

techniques which result in optimal feedback con-

trollers for dynamical systems that can be described

in terms of ordinary differential or difference equa-

tions. These involve a computational intelligence

technique known as Policy Iteration (PI) [8, 11, 12,

14, 16], which refers to a class of algorithms built

as a two-step iteration: policy evaluation and pol-

icy improvement. PI provides effective means of

learning solutions to HJ equations online. In control

theoretic terms, the PI algorithm amounts to learn-

ing the solution to a nonlinear Lyapunov equation,

and then updating the policy through minimizing a

Hamiltonian function. PI has primarily been devel-

oped for discrete-time systems, and online imple-

mentation for control systems has been developed

through approximation of the value function based

on work by [9, 10,13]. Recently, online policy it-

eration methods for continuous-time systems have

been developed by [17, 18, 20].

We present an online integral reinforcement al-

gorithm that combines the advantages of [19] and

[20]. These include simultaneous tuning of distur-

bance, actor and critic neural networks (i.e. all neu-

ral networks are tuned at the same time) and no need

for the drift term in the dynamics. Simultaneous

tuning of actor/disturbance/critic structures was in-

troduced by [18, 19], and has been the idea of recent

papers in the area, however in most of these papers

the authors either designed model-based controllers

[22] or used dynamic neural networks to identify

a model for the unknown nonlinear plant [23, 24].

Our algorithm avoids full knowledge of the plant

and uses only three neural networks by designing a

hybrid controller as in [20]. This paper generalizes

the method given in [19] to solve the 2-player zero-

sum game problem for nonlinear continuous-time

systems without knowledge of the drift dynamics.

The contributions of this paper are a new direct

adaptive control structure with three parametric ap-

proximation structures that converges to the solu-

tion of the zero-sum game problem without know-

ing the system drift dynamics term. The adaptive

structure converges to the solutions to the HJI equa-

tion without ever explicitly solving either the HJI

equation or nonlinear Lyapunov equations. The

three approximation structures are tuned simultane-

ously in real time using data measured along the

system trajectories.

The paper is organized as follows. Section 2 re-

views the formulation of the two-player zero-sum

differential game. A policy iteration algorithm is

given to solve the HJI equation by successive solu-

tions on nonlinear Lyapunov-like equations. This

essentially extends Kleinman’s algorithm to non-

linear zero-sum differential games. Section 3 de-

velops the online zero-sum game PI algorithm with

integral reinforcement learning. Care is needed to

develop suitable approximator structures for online

solution of zero-sum games. First a suitable ‘critic’

approximator structure is developed for the value

function and its tuning method is pinned down.

A persistence of excitation is needed to guaran-

tee proper convergence. Next, suitable ‘actor’ ap-

proximator structures are developed for the control

and disturbance policies. Finally the main result

is presented in Theorem 1, which shows how to

tune all three approximators simultaneously by us-

ing measurements along the system trajectories in

real time. Proofs using Lyapunov techniques guar-

antee convergence and closed-loop stability. Sec-

tion 4 presents simulation examples that show the

effectiveness of the online synchronous zero-sum

game CT PI algorithm in learning the zero sum

game solution for both linear and nonlinear sys-

tems.

2 Background on Zero Sum Games

In this section is presented a background review

of 2-player zero-sum differential games. The objec-

tive is to lay a foundation for the structure needed

in subsequent sections for online solution of these

problems in real-time. In this regard, the Policy It-
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eration Algorithm for 2-player games presented at

the end of this section is key.

Consider the nonlinear time-invariant affine in

the input dynamical system given by

ẋ = f (x)+g(x)u(x)+ k(x)d(x) (1)

where state x(t) ∈ R
n, f (x(t)) ∈ R

n, g(x(t)) ∈
R

nxm,control u(x(t)) ∈ R
m, k(x(t)) ∈ R

nxqand dis-

turbance d(x(t)) ∈ R
q, Assume that f (x) is locally

Lipschitz, f (0) = 0 so that x = 0 is an equilibrium

point of the system.

Define the performance index [26]

(2)

forQ(x) ≥ 0,R = RT > 0, r(x,u,d,T ) = Q(x) +

uT R
T

u− γ2

T
‖d‖2

, and T > 0a parameter to be defined

and γ≥ γ∗ ≥ 0, where γ∗ is the smallest γ for which

the system is stabilized [4]. For feedback policies

u(x) and disturbance policies d(x), define the value

or cost of the policies as

V (x(t),u,d) =
∫ ∞

t

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dt

(3)

When the value is finite, a differential equivalent to

this is the nonlinear Lyapunov-like equation

0 = r(x,u,d,T )

+(∇V )T ( f (x)+g(x)u(x)+ k(x)d(x)), V (0) = 0

(4)

where ∇V = ∂V
/

∂x ∈ Rn is the (transposed)

gradient and the Hamiltonian is

H(x,∇V,u,d) = r(x,u,d,T )

+(∇V )T ( f (x)+g(x)u(x)+ k(x)d)
(5)

For feedback policies [3], a solution V (x)≥ 0 to (4)

is the value (3) for given feedback policy u(x) and

disturbance policy d(x).

2.1 Two-Player Zero-Sum Differential

Games and Nash Equilibrium

Define the 2-player zero-sum differential game [2],

[3], [25]

(6)

subject to the dynamical constraints (1). Thus, u is

the minimizing player and d is the maximizing one.

This 2-player optimal control problem has a unique

solution if a game theoretic saddle point exists, i.e.,

if the Nash condition holds

min
u

max
d

J(x(0),u,d) = max
d

min
u

J(x(0),u,d) (7)

To this game is associated the Hamilton-Jacobi-

Isaacs (HJI) equation

(8)

Given a solution V ∗(x) ≥ 0 : Rn → R to the HJI

(8), denote the associated control and disturbance

by employing the stationarity conditions as

∂H

∂u
= 0⇒ u∗ =− 1

2
T R−1gT (x)∇V ∗ (9)

∂H

∂d
= 0⇒ d∗ =

1

2γ2
T kT (x)∇V ∗ (10)

and write

(11)

Note that global solutions to the HJI (11) may

not exist. Moreover, if they do, they may not be

smooth. See [3] for a discussion on viscosity solu-

tions to the HJI. The HJI equation (11) may have

more than one nonnegative local smooth solution

V (x)≥ 0. A minimal nonnegative solution Va(x)≥
0 is one such that there exists no other nonnega-

tive solution V (x) ≥ 0 such that Va(x) ≥ V (x) ≥ 0.

Of the nonnegative solutions to the GARE, select

the one corresponding to the stable invariant mani-

fold of the Hamiltonian matrix. Then, the minimum

nonnegative solution of the HJI is the one having

this stabilizing GARE solution as its Hessian ma-

trix evaluated at the origin [4].

It is shown in [3] that if V ∗(x) is the minimum non-

negative solution to the HJI (11) and (1) is locally

detectable, then (9), (10) given in terms of V ∗(x) are

in Nash equilibrium solution to the zero-sum game

and V ∗(x) is its value.

2.2 Policy Iteration

The HJI equation (11) is usually intractable to solve

directly. One can solve the HJI iteratively using one

of several algorithms that are built on iterative solu-

tions of the Lyapunov equation (4). Included are [4]

which uses an inner loop with iterations on the con-

trol, and [6] which uses an inner loop with iterations

on the disturbance. These are in effect extensions

of Kleinman’s algorithm [27] to nonlinear 2-player

games. Here, we shall use the latter algorithm.
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J(x(0),u,d) =

∫ ∞

0

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dt ≡

∫ ∞

0
r(x,u,d,T ) dt (2)

V ∗(x(0)) = min
u

max
d

J(x(0),u,d)= min
u

max
d

∫ ∞
0

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dt (6)

Policy Iteration (PI) Algorithm for 2-Player

Zero-Sum Differential Games

Initialization: Start with a stabilizing admissi-

ble control policy u0

1. For j = 0,1, ... given u j

2. For i = 0,1, ... set d0 = 0,

solve for V i
j(x(t)), di+1 using (12), (13)

On convergence, set Vj+1(x) =V i
j(x)

3. Update the control policy using (14)

Go to 1.

Note that this algorithm relies on successive so-

lutions of nonlinear Lyapunov-like equations (12).

As such, the discussion surrounding (4) shows that

the algorithm finds the value V i
j(x(t)) of successive

control/disturbance policy pairs.

3 Online Solution of Zero Sum

Games with Integral Reinforce-

ment Learning

The online solution of zero-sum games in real time

cannot be accomplished by simply throwing in the

standard NN structures and adaptation approaches.

E.g., for one thing, approximation is required of

both the value function and its gradient. Second,

one requires learning of the cost or value associ-

ated with the current control and disturbance poli-

cies. Therefore, in this section we first carefully

develop proper approximator structures which lead

to solution of the problem.

3.1 Value Function Approximation

A practical method for implementing PI for

continuous-time systems involves two aspects:

value function approximation (VFA) and integral

reinforcement learning (IRL). This section dis-

cusses VFA, and the next presents IRL. In VFA,

the Critic value and the Actor control function are

approximated by neural networks, and the PI al-

gorithm consists in tuning alternatively each of the

three neural networks.

It is important to approximate V (x) in Sobolev

space, since both the value V (x) and its gradient

must be approximated. This machinery is provided

by the Weierstrass higher-order [7] approximation

theorem. Thus, assume there exist a weight param-

eter matrix W1 such that the value V (x) is approxi-

mated by a neural network as

V (x) =W T
1 φ(x)+ ε(x) (15)

where φ(x) : R
n → R

N is the activation func-

tion vector, N the number of neurons in the hidden

layer, and ε(x) the NN approximation error. It is

known that ε(x) is bounded by a constant on a com-

pact set. Select the activation functions to provide a

complete basis set such that V (x) and its derivative

∂V

∂x
= ∇φTW1 +

∂ε

∂x
(16)

are uniformly approximated. According to

the Weierstrass higher-order approximation theo-

rem [7], such a basis exists if V (x) is sufficiently

smooth. Then, as the number of hidden-layer neu-

rons N → ∞, the approximation error ε → 0 uni-

formly.

3.2 Integral Reinforcement Learning

The PI algorithm given above requires full system

dynamics, since f (x),g(x),k(x)appear in the Bell-

man equation (12). In order to find an equivalent

formulation of the Bellman equation that does not

involve the dynamics, we note that for any time t0
and time interval T ¿ 0 the value function (3) satis-

fies (17)

In [20] it is shown that (17) and (12) are equiva-

lent, i.e., they both have the same solution. There-

fore, (17) can be viewed as a Bellman equation for

CT systems. Note that this form does not involve

the system dynamics. We call this the integral re-
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0=Q(x)+∇V T (x) f (x)−
1

4
∇V T (x)g(x)T R−1gT (x)∇V (x) +

1

4γ2
∇V T (x)T kkT ∇V (x), V (0) = 0 (8)

0 = H(x,∇V,u∗,d∗) = Q(x)+∇V T (x) f (x)−
1

4
∇V T (x)g(x)T R−1gT (x)∇V (x)+

1

4γ2
∇V T (x)T kkT ∇V (x)

(11)

inforcement learning (IRL) form of the Bellman

equation.

Therefore, by using a critic NN for VFA, the

Bellman error based on (17) becomes (18)

where the parameter in the control weighting term

is selected as the time T>0. We define the integral

reinforcement as

p(t) =
∫ t

t−T

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dτ (19)

Now (18) can be written as

εB− p =W T
1 ∆φ(x(t)) (20)

where

∆φ(x(t))≡ φ(x(t))−φ(x(t−T )). (21)

Under the Lipschitz assumption on the dynamics,

the residual error εB is bounded on a compact set.

Remark 1. Note that, as N → ∞, εB → 0 uniformly

[1].

3.3 Online Integral Reinforcement Learn-

ing Algorithm for Zero Sum Games

Standard PI algorithms for CT systems are of-

fline methods that require complete knowledge on

the system dynamics to obtain the solution (i.e. the

functions f (x),g(x),k(x) in Bellman equation (12)

need to be known). It is desired to change the of-

fline character of PI for CT systems and implement

it online in real-time as in adaptive control mech-

anisms. Therefore, we present an adaptive learn-

ing algorithm that uses simultaneous continuous-

time tuning for the actor and critic neural networks

and does not need the drift term f (x) in the dynam-

ics. We term this the online integral reinforcement

learning algorithm for zero sum games.

3.3.1 Critic Neural Network

The weights of the critic NN,W1 that solve (18)

are unknown. The output of the critic neural net-

work is

V̂ (x) = Ŵ T
1 φ(x) (22)

where Ŵ1 are the current known values of the critic

NN weights. Recall that φ(x) : Rn→R
N is the acti-

vation functions vector, with N the number of neu-

rons in the hidden layer. The approximate Bellman

error is then (23)

∫ t

t−T

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dτ

+Ŵ T
1 φ(x(t))−Ŵ T

1 φ(x(t−T )) = e1 (23)

which according to (19) can be written as

Ŵ T
1 ∆φ(x(t)) = e1− p (24)

It is desired to select Ŵ1 to minimize the squared

residual error

E1 =
1
2
eT

1 e1 (25)

ThenŴ1(t)→W1. We select the tuning law for the

critic weights as the normalized gradient descent al-

gorithm

˙̂W1 =−a1
∆φ(x(t))T

(1+∆φ(x(t))T ∆φ(x(t)))2
•

[
∫ t

t−T

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dτ+∆φ(x(t))TŴ1]

(26)

Note that the data required in this tuning algo-

rithm at each time are (∆φ(t), p(t)). The system

dynamics f (x),g(x) are not needed. Note for future

use that

∆φ(t)≡ ∆φ(x(t)) =
∫ t

t−T ∇φ(x)ẋdτ

=
∫ t

t−T ∇φ( f +gu+ kd) dτ =
∫ t

t−T σ1 dτ
(27)

Define the critic weight estimation error W̃1 =W1−
Ŵ1 and substitute (18) in (26). Then, with the no-

tation ∆φ̄(t) = ∆φ(t)/(∆φ(t)T∆φ(t)+ 1) and ms =
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0 = Q(x)+∇V iT
j (x)( f +gu j + kdi)+uT

j Ru j− γ2
∥

∥di
∥

∥

2
(12)

di+1 = argmax
d∈Ψ(Ω)

[H(x,∇V i
j ,u j,d)] =

1

2γ2
kT (x)∇V i

j (13)

u j+1 = argmin
u∈Ψ(Ω)

[H(x,∇Vj+1),u,d] =−
1
2
R−1gT (x)∇Vj+1 (14)

1 + ∆φ(t)T ∆φ(t), we obtain the dynamics of the

critic weight estimation error as

˙̃W1 =−a1∆φ̄(t)∆φ̄(t)TW̃1 +a1∆φ̄(t)
εB

ms

(28)

Though it is traditional to use critic tuning al-

gorithms of the form (26), it is not generally under-

stood when convergence of the critic weights can be

guaranteed. In this paper, we address this issue in a

formal manner. To guarantee convergence of Ŵ1 to

W1, the next Persistence of Excitation (PE) assump-

tion is required. Note from (24) that the regression

vector ∆φ(t), or equivalently the normalized vec-

tor ∆φ̄(t) , must be persistently exciting to solve for

Ŵ1in a least squares sense.

Persistence of Excitation (PE) Assumption.

Let the signal ∆φ̄(t) be persistently exciting over the

interval [t−TPE , t], i.e. there exist constants β1 > 0,

β2 > 0, TPE > 0 such that, for all t,

β1I≤ S0 ≡

∫ t

t−TPE

∆φ̄(τ)∆φ̄T(τ)dτ≤ β2I (29)

Technical Lemma 1. Consider the error dynamics

(28) with output

y1 = ∆φ̄(t)TW̃1

Assume ∆φ̄(t) is PE according to (29).

Let||εB|| ≤ εmaxand ||y1|| ≤ ymax. Then

||W̃1||converges exponentially to the residual set

W̃1(t)≤

√

β2TPE

β1

{[ymax +δβ2a1 (εmax + ymax)]} .

where δ is a positive constant of the order of 1.

Proof: [14].

3.3.2 Action and Disturbance Neural Networks

The policy improvements step in PI are given

approximately as

u(x) =−1
2
T R−1gT (x)∇φTW1 (30)

d(x) = 1
2γ2 T kT (x)∇φTW1 (31)

with critic weights W1 unknown. Therefore, define

the control and disturbance policy in the form of ac-

tion neural networks which compute the control and

the disturbance input in the structured form

u2(x) =−
1
2
T R−1gT (x)∇φTŴ2 (32)

d3(x) =
1

2γ2 T kT (x)∇φTŴ3 (33)

where Ŵ2, Ŵ3 denote the current known values of

the actor and disturbance NN weights respectively.

Based on (30), (31) and (18), define the approx-

imate HJI equation (34) with the notations

D̄1(x) = ∇φ(x)g(x)T R−1gT (x)∇φT (x),
Ē1(x) =

T
γ2 ∇φ(x)k(x)kT (x)∇φT (x)

where W1 denotes the ideal unknown weights of the

critic, actor and disturbance neural networks which

solve the HJI. The error εHJI(x) has components

arising from the NN approximation error and its

gradient. We now present the main results, which

provide tuning laws for the actor, disturbance and

critic neural networks that guarantee convergence

to the Nash solution of the game with closed-loop

stability. The next notion of practical stability is

needed.

Definition 2. [26] (UUB) A time signal ζ(t)is
said to be uniformly ultimately bounded (UUB)

if there exists a compact set S ⊂ R
nso that for

all ζ(0) ∈ Sthere exists a bound B and a time

TB(B,ζ(0)) such that ‖ζ(t)‖ ≤ B for all t ≥ t0 +TB.

Definition 3. [27] A continuous function α :

[α,0) → [0,∞)is said to belong to class Kif it is

strictly increasing and α(0) = 0. It is said to belong

to class K∞ if α = ∞and α(r) = ∞ as r→ ∞.

Facts 1. For a given compact set Ω⊂ R
n:

1. f(.) is Lipschitz so that ‖ f (x)‖ ≤ b f ‖x‖
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V (xt0) =
∫ t0

t0−T
r(x(τ),u(x(τ)),d(x(τ)))dτ+V (xt0−T ) (17)

∫ t
t−T

(

Q(x)+uT R
T

u− γ2

T
‖d‖2

)

dτ +W T
1 φ(x(t))−W T

1 φ(x(t−T ))≡ εB (18)

2. g(.), k(.) are bounded by constants:

‖g(x)‖< bg, ‖k(x)‖< bk

3. The NN approx error and its gradient are

bounded so that

‖ε1‖< bε1,‖∇ε1‖< bε1x

4. The NN activation function and its gradients are

bounded so that

‖φ(x)‖< bφ, ‖∇φ(x)‖< bφx

5. The critic NN weights are bounded by a constant

‖W1‖<Wmax ‖φ1(x)‖< bφ1
,

‖∇φ1(x)‖< bφ1x
,

‖φ2(x)‖< bφ2
,

‖∇φ2(x)‖< bφ2x

Theorem 1. Adaptive Tuning Algorithm for zero

sum games. Let the system dynamics be given by

(1), tuning for the critic NN be provided by (35)

where (36) and assume that ∆φ̄2(t) is persistently

exciting (which means u2, d3are persistently excit-

ing). Let the actor NN be tuned as (37) and the

disturbance NN be tuned as (38) where F1 > 0,

F2 > 0, F3 > 0, F4 > 0 are tuning parameters cho-

sen as in the proof. Then there exists a N0 and a time

T0 such that, for the number of hidden layer units

N > N0 and the time interval T < T0, the closed-

loop system state, the critic NN error W̃1, the actor

NN error W̃2, and the disturbance NN error W̃3are

UUB.

Proof: See appendix.

Remark 2. Note that the data required in the critic

tuning algorithm (35) at each time are ∆φ2(t) and

the integral reinforcement. The system dynamics

f (x),g(x),k(x) are not needed. The input coupling

dynamics g(x),k(x) are needed for the actor and

disturbance tuning algorithm (37).

Remark 3. The tuning parameters F1,F2,F3,F4 are

selected appropriately to ensure stability as detailed

in the proof of Theorem 1.

Remark 4. The proof reveals that the time interval

T cannot be selected too large nor the number of

hidden layer units N too small.

Remark 5. The assumption Q(x) > 0 is sufficient

but not necessary for this result

Theorem 2. Nash Solution. Suppose the hypothe-

ses of Theorem 1, hold. Then:

1. H(x,Ŵ1, û1, d̂1) is UUB. That is, Ŵ1 converges

to the approximate HJI solution, the value of the

ZS game. Where

û1 =−
1

2
R−1gT (x)∇φT

1 (x)Ŵ1 (39)

d̂1 =
1

2γ2
kT (x)∇φT

1 (x)Ŵ1 (40)

2. u2(x),d3(x) (see (32) and (33)) converges to the

approximate Nash equilibrium solution of the

ZS game.

Proof: See [19].

Remark 6. The theorems show that PE is needed

for proper identification of the value function by the

critic NN.

4 Simulations

To support the new online algorithm for zero

sum games we offer two simulation examples, one

linear and one nonlinear. In both cases we ob-

serve convergence to the Nash solution of the game

without knowing the system drift dynamics. In

these simulations, exponentially decreasing noise is

added to the control and disturbance inputs to en-

sure PE until convergence is obtained.

4.1 Linear System

Consider the continuous-time F16 aircraft plant

with quadratic cost function used in [28]. The sys-

tem state vector is x = [ α q δe ], where α de-

notes the angle of attack, q is the pitch rate and δe

is the elevator deflection angle. The control input is
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∫ t

t−T

(

−Q(x)−
1

4
W T

1 D1(x)W1 +
1

4
W T

1 Ē1(x)W1 + εHJI(x)

)

dτ =W T
1 ∆φ(x(t)) (34)

˙̂W1 =−a1
∆φ2(t)

(∆φ2(t)T ∆φ2(t)+1)2

(

∆φ2(t)
TŴ1 +

∫ t
t−T

(

Q(x)+ 1
4
Ŵ T

2 D1Ŵ2−
1
4
Ŵ T

3 Ē1Ŵ3

)

dτ
)

(35)

∆φ2(x(t)) =
∫ t

t−T ∇φ( f +gu2 + kd3) dτ =
∫ t

t−T σ2 dτ≡ φ(x(t))−φ(x(t−T ))≡ ∆φ2(t) (36)

˙̂W2 =−a2

{

(

F2Ŵ2−F1T ∆φ̄T
2 Ŵ1

)

−
1

4ms
D1(x)Ŵ2∆φ̄T

2 Ŵ1

}

(37)

˙̂W3 =−a3

{

(

F4Ŵ3−F3T ∆φ̄T
2 Ŵ1

)

+
1

4ms

Ē1(x)Ŵ3∆φ̄T
2 Ŵ1

}

(38)

f (x) =

[

−x1 + x2

−x3
1− x3

2 +0.25x2(cos(10x1)+2)2
−0.25x2

1
γ2 (sin(x1)+2)2

]

(41)

ẋ =

[

−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.175550 0 −1

]

x+





0

0

1



u+





1

0

0



d

(42)

the elevator actuator voltage and the disturbance is

wind gusts on angle of attack.

One has the dynamics ẋ = Ax+Bu+Kd,(42)

where Q and R in the cost function are identity

matrices of appropriate dimensions and γ = 5.

Also a1 = 10, a2 = a3 = 1, F1 = I, F2 = 10I,

F3 = I, F4 = 10I where I is an identity matrix

of appropriate dimensions and T = 0.01. In this

linear case the solution of the HJI equation is

given by the solution of the game algebraic Ric-

cati equation (GARE) [25]. Solving the GARE

gives the parameters of the optimal critic as W ∗

1 =
[1.6573 1.3954 −0.1661 1.6573 −0.1804 0.4371]T

which are the components of the Riccati solution

matrix P.

The online integral reinforcement zero-sum

game algorithm is implemented as in Theorem

1. Figure 1 shows the critic parameters, denoted

by Ŵ1 = [ Wc1 Wc2 Wc3 Wc4 Wc5 Wc6 ]T

converging to the optimal values. In fact after

300s the critic parameters converged to Ŵ1(t f ) =
[1.7408 1.2247 −0.2007 1.5247 −0.1732 0.4585]T

The actor and disturbance parameters after 300s

converge to the values of

Ŵ3(t f ) = Ŵ2(t f ) = Ŵ1(t f ).

Then, the actor NN is given as

û2(x) =−
T
2

R−1





0

0

1





T

∇φT
1 (x)Ŵ2(t f ).

Then, the disturbance NN is given as

d̂(x) = T
2γ2





0

0

1





T

∇φT
1 (x)Ŵ3(t f )

The evolution of the system states is presented in

Figure 2. One can see that after 300s convergence

of the NN weights in critic, actor and disturbance

has occurred.
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Figure 1. Convergence of the critic parameters to

the parameters of the optimal critic.

Figure 2. Evolution of the states.

4.2 Nonlinear System

Consider the following affine in control and dis-

turbance inputs nonlinear system, with a quadratic

cost constructed as in [29]

ẋ = f (x)+g(x)u+ k(x)d, x ∈ R
2

where (41)

g(x) =

[

0

cos(10x1)+2

]

,

k(x) =

[

0

(sin(x1)+2)

]

.

One selects Q =

[

1 0

0 1

]

, R = 1, γ = 8. Also

a1 = 50,a2 = a3 = 1, F1 = I, F2 = 10I, F3 = I,

F4 = 10I where I is an identity matrix of appropri-

ate dimensions and T = 0.01.

The optimal value function is

V ∗(x) =
1

4
x4

1 +
1

2
x2

2

the optimal control signal is

u∗(x) =−T
2
(cos(10x1)+2)x2

and

d∗(x) =
T

2γ2
(sin(x1)+2)x2

One selects the critic NN vector activation func-

tion as

ϕ1(x) = [x2
1 x2

2 x4
1 x4

2]

Figure 3 shows the critic parameters, denoted by

Ŵ1 = [ Wc1 Wc2 Wc3 Wc4]
T

by using the synchronous zero-sum game algo-

rithm. After convergence at about 50s have

Ŵ1(t f ) = [0.0036 0.5045 0.2557 0.0006]T

The actor and disturbance parameters after 80s con-

verge to the values of

Ŵ3(t f ) = Ŵ2(t f ) = Ŵ1(t f ).

So that the actor NN

û2(x) =−
T
2

R−1

[

0

cos(2x1)+2

]T

∇φT
1 (x)Ŵ2(t f )

also converged to the optimal control, and the dis-

turbance NN

d̂(x) = T
2γ2

[

0

sin(4x1)+2

]T

∇φT
1 (x)Ŵ3(t f )

also converged to the optimal disturbance.

The evolution of the system states is presented in

Figure 4.
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Figure 3. Convergence of the critic parameters to

the parameters of the optimal critic.

Figure 4. Evolution of the states.

5 Conclusion

In this paper we have proposed a new adaptive

algorithm which solves the continuous-time zero-

sum game problem for nonlinear systems. The im-

portance of this algorithm relies on the partial need

of dynamics, only g(x) is needed, the simultaneous

tuning of the actor, disturbance and critic neural net-

works and the convergence to HJI and saddle point

without solving these equations.

Appendix

Proof for Theorem 1: Let W̃1 = W1− Ŵ1, W̃2 =
W1 − Ŵ2 and W̃3 = W1 − Ŵ3denote the errors be-

tween the weights. We consider the Lyapunov func-

tion candidate (A.1) The derivative of the Lyapunov

function is given by(A.2).

Next we will evaluate each one of the three terms

of L̇(x). The first term is L̇V (x) =
∫ t

t−T V̇ (x(τ))dτ =∫ t
t−T (W

T
1 ∇φ1(x)ẋ+ ε̇(x))dτ With the control com-

puted by the actor approximator (32) the system dy-

namics are given by

ẋ = f (x)− 1
2
g(x)T R−1gT (x)∇φT

1 (x)Ŵ2

+ 1
2

T
γ2 kkT ∇φT

1 (x)Ŵ3

The first term in (A.2) becomes (A.3).

Now we want to obtain a representation of

L̇V (x) in terms of the parameters of the op-

timal value functionW1, and the parameter er-

rors W̃1, W̃2 and W̃3. Thus, by adding and

subtracting 1
2
W T

1 D1(x)W1, we obtain (A.3.1) and us-

ing the notation (A.3.2). From the HJI equation (34)

one has (A.4) then (A.5). Using the tuning law for

the critic, the second term in (A.1) becomes (A.5.1)

Adding (A.3) to the integral in the right hand side,

using the notation ms = ∆φ2(t)
T ∆φ2(t)+1and (36)

we obtain (A.6)

Using (27) and (36) the first integral in (A.6) be-

comes (A6.1)

Then (A.5) becomes

L̇1 = W̃ T
1

∆φ2(x(t),T )
m2

s
(∫ t

t−T

(

−

1
2
Ŵ T

2 D̄1(x)Ŵ1 +
1
2
Ŵ T

3 Ē1(x)Ŵ1

+1
4
W T

1 D̄1(x)W1−
1
4
W T

1 Ē1(x)W1

)

dτ

+
∫ t

t−T

(

1
4
Ŵ T

2 D̄1(x)Ŵ2−
1
4
Ŵ T

3 Ē1(x)Ŵ3

−W̃ T
1 ∇φ1(x) f (x) + εHJI(x)

)

dτ
)

Using the definition for the parameter error

W1 = Ŵ2 +W̃2, W1 = Ŵ3 +W̃3the first six terms un-

der the integral can be written as

−

1
4
W T

1 Ē1(x)W1 +
1
2
Ŵ T

3 Ē1(x)Ŵ1−
1
4
Ŵ T

3 Ē1(x)Ŵ3
1
4
W T

1 D̄1(x)W1−
1
2
Ŵ T

2 D̄1(x)Ŵ1 +
1
4
Ŵ T

2 D̄1(x)Ŵ2

= 1
4
(Ŵ2 +W̃2)

T D̄1(x)(Ŵ2 +W̃2)

−

1
4
(Ŵ3 +W̃3)

T Ē1(x)(Ŵ3 +W̃3)

−

1
2
Ŵ T

2 D̄1(x)Ŵ1 +
1
4
Ŵ T

2 D̄1(x)Ŵ2

+1
2
Ŵ T

3 Ē1(x)Ŵ1−
1
4
Ŵ T

3 D̄1(x)Ŵ3

Developing the parenthesis, and making use of

the definition W1 = Ŵ1 +W̃1 we obtain
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L(t) =
∫ t

t−T V (x(τ))dτ+ 1
2
W̃ T

1 (t)a−1
1 W̃1(t)+

1
2

∫ t
t−T W̃ T

2 (τ)a−1
2 W̃2(τ)dτ+ 1

2

∫ t
t−T W̃ T

3 (τ)a−1
3 W̃3(τ)dτ ,,

LV (x)+L1(x)+L2(x)+L3(x)

(A.1)

L̇(x) =
∫ t

t−T V̇ (x(τ))dτ+W̃ T
1 (t)a−1

1
˙̃W1(t)+

∫ t
t−T W̃ T

2 (τ)a−1
2

˙̃W2(τ)dτ+
∫ t

t−T W̃ T
3 (τ)a−1

3
˙̃W3(τ)dτ

(A.2)

L̇V (x) =
∫ t

t−T W T
1

(

∇φ1(x) f (x)− 1
2
D1(x)Ŵ2 +

1
2
Ē1(x)Ŵ3

)

dτ +ε1(x)

where ε1(x(t)) =
∫ t

t−T ∇εT (x) ( f (x)− 1
2
g(x)R−1gT (x)∇φT

1 Ŵ2 +
1

2γ2 kkT ∇φT
1 Ŵ3)dτ

(A.3)

L̇V (x) =
∫ t

t−T

(

W T
1 ∇φ1 f (x)+ 1

2
W T

1 D1(x)
(

W1−Ŵ2

)

−1
2
W T

1 Ē1(x)
(

W1−Ŵ3

)

− 1
2
W T

1 D1(x)W1 +
1
2
W T

1 Ē1(x)W1

)

dτ+ε1(x)

=
∫ t

t−T

(

W T
1 ∇φ1 f (x)+ 1

2
W T

1 D1(x)W̃2−
1
2
W T

1 Ē1(x)W̃3

−1
2
W T

1 D1(x)W1 +
1
2
W T

1 Ē1(x)W1

)

dτ+ ε1(x)

(A.3.1)

σ1(x) = ∇φ1 f (x)−
1

2
D1(x)W1 +

1

2
Ē1(x)W1

L̇V (x) =
∫ t

t−T

(

W T
1 σ1 +

1
2
W T

1 D1(x)W̃2−
1
2
W T

1 Ē1(x)W̃3

)

dτ+ε1(x)

(A.3.2)

∫ t
t−T W T

1 σ1dτ=
∫ t

t−T

(

−Q(x)− 1
4
W T

1 D1(x)W1 +
1
4
W T

1 Ē1(x)W1 + εHJI(x)
)

dτ .

(A.4)

L̇V (x) =
∫ t

t−T

(

−Q(x)− 1
4
W T

1 D1(x)W1 +
1
4
W T

1 Ē1(x)W1 + εHJI(x)
)

dτ +
∫ t

t−T

(

1
2
W T

1 D̄1(x)W̃2−
1
2
W T

1 Ē1(x)W̃3

)

dτ+ ε1(x)

(A.5)

L̇1 = W̃ T
1 (t)a−1

1
˙̃W1(t)

= W̃ T
1

∆φ2(t)

(∆φ2(t)T ∆φ2(t)+1)2 {∆φ2(t)
TŴ1 +

∫ t
t−T

(

Q(x)+ 1
4
Ŵ T

2 D1Ŵ2−
1
4
Ŵ T

3 Ē1Ŵ3

)

dτ}

(A.5.1)

L̇1 = W̃ T
1

∆φ2(t)
m2

s

(∫ t
t−T (σ

T
2 (x)Ŵ1−σT

1 (x)W1 )dτ+
∫ t

t−T

(

1
4
Ŵ T

2 D̄1(x)Ŵ2−
1
4
Ŵ T

3 Ē1(x)Ŵ3

−1
4
W T

1 D̄1(x)W1 +
1
4
W T

1 Ē1(x)W1 + εHJI(x)
)

dτ
)

(A.6)

∫ t
t−T (σ

T
2 (x) Ŵ1−σT

1 (x)W1)dτ =

=
∫ t

t−T (−W̃ T
1 ∇φ1(x) f (x)− 1

2
Ŵ T

2 D̄1(x)Ŵ1+
1
2
Ŵ T

3 Ē1(x)Ŵ1 +
1
2
W T

1 D̄1(x)W1−
1
2
W T

1 Ē1(x)W1)dτ

(A.6.1)
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1
4
W T

1 D̄1(x)W1

−1
2
Ŵ T

2 D̄1(x)Ŵ1 +
1
4
Ŵ T

2 D̄1(x)Ŵ2

−1
4
W T

1 Ē1(x)W1

+1
2
Ŵ T

3 Ē1(x)Ŵ1−
1
4
Ŵ T

3 Ē1(x)Ŵ3

= 1
2
Ŵ T

2 D̄1(x)W̃1 +
1
4
W̃ T

2 D̄1(x)W̃2

−1
2
Ŵ T

3 Ē1(x)W̃1−
1
4
W̃ T

3 Ē1(x)W̃3

Using this last relation and (36), we obtain

(A.7). Inserting the results (A.5) and (A.7) in (A.2),

and using the notation
∆φ2(x(t−T ),T,û2,d̂3)

ms
= ∆φ2(x(t−T ),T, û2, d̂3),

equation (A.2) becomes (A7.1). Using the relation

∆φ2(x(t−T ),T,û2,d̂3)
ms

=
∫ t

t−T
1

ms
σ̄2(x(τ))dτ≡ Φ̄2(t)

and making use of weight error definitions it can be

written as (A.7.2).

Using the dynamics of the actor parameters

(A.7.2.1) the dynamics of the disturbance param-

eters (A.7.2.2) and the weight error definitions and

rearranging the terms, (A.2) becomes (A.7.3)

According to Facts 1, we can write (A.3) as

(A.7.2.3)

Also since Q(x) > 0 there exist qsuch that

xT qx < Q(x)and for x ∈Ω.

Now (A.2) becomes (A.8).

Select ε > 0 and N0(ε) such thatsup
x∈Ω

‖εHJI‖ <

ε.Then, assuming N > N0 we define

Z̃(t,τ) =









x(τ)

∆φ2(x(t−T ),T, û2, d̂3)
TW̃1(t)

W̃2(τ)
W̃3(τ)









and

z(t,τ) =

















∆φ2(x(t−T ),T, û2, d̂3)
TW̃1(t)

∆φ2(x(t−T ),T, û2, d̂3)
TW̃1(τ)

W̃2(τ)
W̃2(τ)

T D̄1(x(τ))W̃2(τ)
W̃3(τ)

W̃3(τ)
T Ē1(x(τ))W̃3(τ)

















then (A.8) becomes (A.8.1) where (A.8.2)

W =

















0 0 W13 W14 W15 W16

0 0 W23 W24 W25 W26

W31 W32 0 0 0 0

W41 W42 0 0 0 0

W51 W52 0 0 0 0

W61 W62 0 0 0 0

















with (A.8.3) and

D1(x) = ∇φ(x)g(x)R−1gT (x)∇φT (x),

E1(x) =
1
γ2 ∇φ(x)k(x)kT (x)∇φT (x).

Also

M =









M11 0 0 0

0 M22 M23 M24

0 M32 M33 M34

0 M42 M43 M44









with M11 = qI, M22 = I,

M32 = MT
23 =−

1

2
T F1−

(

1

8ms(t)
D̄1(τ)W1(τ)

)

,

M42 = MT
24 =−

1

2
T F3 +

(

1

8ms(t)
Ē1(τ)W1(τ)

)

M33 = F2

−1
4
(W1(τ)

T Φ̄2(τ)
T −W1(t)

T Φ̄2(t)
T )D̄1(x(τ))

−1
8

(

D̄1(τ)W1(t)m
T(t)+m(t)W1(t)

T D̄1(τ)
)

M44 = F4

+1
4
(W1(τ)

T Φ̄2(τ)
T +W1(t)

T Φ̄2(t)
T )Ē1(x(τ))

+1
8

(

Ē1(τ)W1(t)m
T(t)+m(t)W1(t)

T Ē1(τ)
)

and

d =









d1

d2

d3

d4









with (A.8.4) and m(t)≡ ∆φ2(t)
(∆φ2(t)T ∆φ2(t)+1)2

After taking norms and using the relations

‖z‖2 =
∥

∥∆φ2(x(t−T ),T, û2, d̂3)
TW̃1(t)

∥

∥

2

+
∥

∥∆φ2(x(τ−T ),T, û2, d̂3)
TW̃1(τ)

∥

∥

2

+
∥

∥W̃2(τ)
∥

∥

2
+
∥

∥W̃2(τ)
T D̄1(x(τ))W̃2(τ)

∥

∥

2

+
∥

∥W̃3(τ)
∥

∥

2
+
∥

∥W̃3(τ)
T Ē1(x(τ))W̃3(τ)

∥

∥

2

and for appropriate selection of ρ1, ρ2 one has

‖z(t,τ)‖ ≤ ρ1

∥

∥Z̃(t,τ)
∥

∥+ρ2T
∥

∥Z̃(t,τ)
∥

∥

2
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L̇1 = W̃ T
1

∆φ2(x(t−T ),T,û2,d̂3)
m2

s

∫ t
t−T

(

1
4
W̃ T

2 D̄1(x)W̃2−
1
4
W̃ T

3 Ē1(x)W̃3−σT
2 W̃1 + εHJI(x)

)

dτ

(A.7)

L̇(x) =
∫ t

t−T

(

−Q(x)− 1
4
W1(τ)

T D1(x(τ))W1(τ) +
1
4
W1(τ)

T E1(x(τ))W1(τ)+ εHJI(x)
)

dτ+ ε1(x)

−W̃1(t)
T ∆φ2(x(t−T ),T, û2, d̂3)

(

∆φ2(x(t−T ),T, û2, d̂3)
)T

W̃1(t)

+W̃1(t)
T ∆φ2(x(t−T ),T, û2, d̂3)

∫ t
t−T εHJI(x(τ))dτ

+
∫ t

t−T

(

1
2
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ+
∫ t

t−T W̃ T
2 (τ)α−1

2
˙̃W2(τ)dτ+

∫ t
t−T W̃ T

3 (τ)α−1
3

˙̃W3(τ)dτ

+W̃1(t)
T ∆φ2(x(t−T ),T,û2,d̂3)

ms

∫ t
t−T

(

1
4
W̃2(τ)

T D̄1(x(τ))W̃2(τ)
)

dτ

−W̃1(t)
T ∆φ2(x(t−T ),T,û2,d̂3)

ms

∫ t
t−T

(

1
4
W̃3(τ)

T Ē1(x(τ))W̃3(τ)
)

dτ

(A.7.1)

L̇(x) =
∫ t

t−T

(

−Q(x)− 1
4
W1(τ)

T D1(x(τ))W1(τ) +
1
4
W1(τ)

T E1(x(τ))W1(τ)+ εHJI(x)
)

dτ+ε1(x(t))

−W̃1(t)
T ∆ϕ2(t)∆ϕ2(t)

TW̃1(t)+W̃1(t)
T Φ̄2(t)

∫ t
t−T εHJI(x(τ))dτ+

∫ t
t−T

(

1
2
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ

−
∫ t

t−T

(

1
2
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ−W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ

+W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ+W̃1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ

−W̃1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ+W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W̃2(τ)

T D̄1(x)W̃2(τ)
)

dτ

−W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W̃3(τ)

T Ē1(x)W̃3(τ)
)

dτ+Ŵ1(t)
T Φ̄2(t)

T 1
4

∫ t
t−T Ŵ2(τ)

T D̄1(x(τ))W̃2(τ)dτ

− 1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ2(τ)

T D̄1(x(τ))W̃2(τ)dτ−Ŵ1(t)
T Φ̄2(t)

T 1
4

∫ t
t−T Ŵ3(τ)

T Ē1(x(τ))W̃3(τ)dτ

+ 1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ3(τ)

T Ē1(x(τ))W̃3(τ)dτ

+
∫ t

t−T

[

˙̃W2(τ)
T a−1

2 + 1
4
Ŵ1(τ)

T Φ̄2(τ)
TŴ2(τ)

T D̄1(x)
]

W̃2(τ)dτ

+
∫ t

t−T

[

˙̃W3(τ)
T a−1

3 − 1
4
Ŵ1(τ)

T Φ̄2(τ)
TŴ3(τ)

T Ē1(x)
]

W̃3(τ)dτ

(A.7.2)

˙̂W2 =−a2

{

(

F2Ŵ2−F1T ∆ϕT
2 Ŵ1

)

− 1
4ms

D1(x)Ŵ2∆ϕT
2 Ŵ1

}

(A.7.2.1)

˙̂W2 =−a2

{

(

F2Ŵ2−F1T ∆ϕT
2 Ŵ1

)

− 1
4ms

D1(x)Ŵ2∆ϕT
2 Ŵ1

}

(A.7.2.2)

‖ε1(x)‖<
∫ t

t−T

(

bεx
b f ‖x‖+

1
2
T bεx

b2
gbφx

σmin(R)
(

Wmax +
∥

∥W̃2

∥

∥

)

+ 1
2γ2 T bεx

b2
κbφx

(

Wmax +
∥

∥W̃3

∥

∥

)

)

dτ

(A.7.2.3)



328 K. G. Vamvoudakis, D. Vrabie, F. L. Lewis

L̇(x) =
∫ t

t−T

(

−Q(x)− 1
4
W1(τ)

T D1(x(τ))W1(τ) +
1
4
W1(τ)

T E1(x(τ))W1(τ)+ εHJI(x)
)

dτ

+ε1(x(t))−W̃1(t)
T ∆φ2(t)∆φ2(t)

TW̃1(t)+
∫ t

t−T (W̃2(τ)
T F2W1(τ)−TW̃2(τ)

T F1∆φ2(τ)
TW1(τ)

−W̃2(τ)
T F2W̃2(τ)+TW̃2(τ)

T F1∆φ2(τ)
TW̃1(τ))dτ+

∫ t
t−T (W̃3(τ)

T F4W1(τ)−TW̃3(τ)
T F2∆φ2(τ)

TW1(τ)
−W̃3(τ)

T F4W̃3(τ)+TW̃3(τ)
T F3∆φ2(τ)

TW̃1(τ))dτ+W̃1(t)
T Φ̄2(t)

∫ t
t−T εHJI(x(τ))dτ

+
∫ t

t−T

(

1
2
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ−∫ t
t−T

(

1
2
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ

+W̃1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ−W̃1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ

+W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W̃2(τ)

T D̄1(x)W̃2(τ)
)

dτ−W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W̃3(τ)

T Ē1(x)W̃3(τ)
)

dτ

+Ŵ1(t)
T Φ̄2(t)

T 1
4

∫ t
t−T Ŵ2(τ)

T D̄1(x(τ))W̃2(τ)dτ−1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ2(τ)

T D̄1(x(τ))W̃2(τ)dτ

−Ŵ1(t)
T Φ̄2(t)

T 1
4

∫ t
t−T Ŵ3(τ)

T Ē1(x(τ))W̃3(τ)dτ+1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ3(τ)

T Ē1(x(τ))W̃3(τ)dτ

−1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ2(τ)

T D̄1(x(τ))W̃2(τ)dτ+ 1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ3(τ)

T Ē1(x(τ))W̃3(τ)dτ

(A.7.3)

So (A.8) becomes (A.8.5)

It is now desired to show that for small enough

T
∥

∥Z̃
∥

∥ is UUB. Select pB > 0large as detailed sub-

sequently. Select T such that T f (t,τ)< ε f for some

fixed ε f > 0∀
∥

∥Z̃
∥

∥< pB

Complete the squares to see that (A.9)

Implies W3(
∥

∥Z̃
∥

∥)> 0and L̇ < 0.

It is now desired to find upper and lower bounds

on the Lyapunov function L. Define w(t) =








x(t)
W̃1(t)
W̃2(t)
W̃3(t)









according to

L(t) =
∫ t

t−T V (x(τ))dτ+ 1
2
W̃ T

1 (t)a−1
1 W̃1(t)

+ 1
2

∫ t
t−T W̃ T

2 (τ)a−1
2 W̃2(τ)dτ

+ 1
2

∫ t
t−T W̃ T

3 (τ)a−1
3 W̃3(τ)dτ

we can find class K (see Definition 3) functions k j

and write

k3 (‖x(t)‖) =
∫ t

t−T k1 (‖x(τ)‖)dτ≤ ∫ t
t−T V (x(τ))dτ

≤ ∫ t
t−T k2 (‖x(τ)‖)dτ = k4 (‖x(t)‖)

k5

(∥

∥W̃2

∥

∥

)

≤ 1

2

∫ t

t−T
W̃ T

2 (τ)a−1
2 W̃2(τ)dτ≤ k6

(∥

∥W̃2

∥

∥

)

k8

(∥

∥W̃3

∥

∥

)

≤ 1

2

∫ t

t−T
W̃ T

3 (τ)a−1
3 W̃3(τ)dτ≤ k9

(∥

∥W̃3

∥

∥

)

We now need to find a relationship between ‖w(t)‖
and

∥

∥Z̃(t,τ)
∥

∥to apply the results of Theorem 4.18

in [27].

One has

∥

∥Z̃(t,τ)
∥

∥≤ ‖w(t)‖
∥

∥∆φ̄2(t)
∥

∥≤ ‖w(t)‖

According to Technical Lemma 1, (A.9.1)

Now assume that we have enough

hidden layer units N > N0then εB →
0according to Remark 1. So we can write

k10 ‖w(t)‖ ≡
(√

β2TPE

β1
(1+δβ2a1)

)−1

‖w(t)‖
≤

∥

∥Z̃(t,τ)
∥

∥≤ ‖w(t)‖
Finally, we can bound the Lyapunov function as

wT Sw≤ L≤ wT S̄w

Therefore,

∥

∥Z̃
∥

∥

2
σ(S)≤‖w‖2 σ(S)≤ L≤‖w‖2 σ̄

(

S̄
)

≤
∥

∥Z̃
∥

∥

2
σ̄
(

S̄
)

and

S =









k3 0 0 0

0 1 0 0

0 0 k5 0

0 0 0 k8









and S̄ =









k4 0 0 0

0 k10 0 0

0 0 k6 0

0 0 0 k9









Take p1 > 0as defined in (A.9). Select pB >
√

σ̄(S̄)
σ(S) p1. Then according to Theorem 4.18 in

[27],∀Z̃(0) ,
∥

∥Z̃
∥

∥ ≤ pB, ∀0 ≤ t, and
∥

∥Z̃
∥

∥ ≤
√

σ̄(S̄)
σ(S) p1, ∀t ≤ TB.

Now the Technical Lemma 1 and the persistence of

excitation condition of ∆φ̄2show UUB of
∥

∥W̃1

∥

∥.
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L̇(x)≤ 1
4

∫ t
t−T W 2

max ‖D̄1(x)‖dτ+ 1
4

∫ t
t−T W 2

max ‖Ē1(x)‖dτ+
∫ t

t−T

(

x(τ)T qx(τ)+ ε(τ)
)

dτ

+
∫ t

t−T

(

bεx
b f ‖x‖+

1
2
T bεx

b2
gbφx

σmin(R)
(

Wmax +
∥

∥W̃2

∥

∥

)

+ 1
2γ2 T bεx

b2
κbφx

(

Wmax +
∥

∥W̃3

∥

∥

)

)

dτ

−W̃1(t)
T ∆φ2(t)∆φ2(t)

TW̃1(t)+
∫ t

t−T W̃2(τ)
T F2W1(τ)−TW̃2(τ)

T F1∆φ2(τ)
TW1(τ)

)

−W̃2(τ)
T F2W̃2(τ)

)

dτ+
∫ t

t−T

(

W̃3(τ)
T F4W1(τ)−TW̃3(τ)

T F3∆φ2(τ)
TW1(τ)

−W̃3(τ)
T F4W̃3(τ)

)

dτ+W̃1(t)
T Φ̄2(t)

∫ t
t−T εHJI(x(τ))dτ+

∫ t
t−T

(

1
2
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ

−
∫ t

t−T

(

1
2
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ+W̃1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T D̄1(x)W̃2(τ)
)

dτ

−W̃1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W1(τ)

T Ē1(x)W̃3(τ)
)

dτ+W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W̃2(τ)

T D̄1(x)W̃2(τ)
)

dτ

−W1(t)
T Φ̄2(t)

∫ t
t−T

(

1
4
W̃3(τ)

T Ē1(x)W̃3(τ)
)

dτ+Ŵ1(t)
T Φ̄2(t)

T 1
4

∫ t
t−T Ŵ2(τ)

T D̄1(x(τ))W̃2(τ)dτ

−1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ2(τ)

T D̄1(x(τ))W̃2(τ)dτ−Ŵ1(t)
T Φ̄2(t)

T 1
4

∫ t
t−T Ŵ3(τ)

T Ē1(x(τ))W̃3(τ)dτ

+1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ3(τ)

T Ē1(x(τ))W̃3(τ)dτ−1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ2(τ)

T D̄1(x(τ))W̃2(τ)dτ

+1
4

∫ t
t−T Ŵ1(τ)

T Φ̄2(τ)
TŴ3(τ)

T Ē1(x(τ))W̃3(τ)dτ

+
∫ t

t−T

(

W̃2(τ)
T T F1

(

∆φ2(τ)
TW̃1(τ)−∆φ2(t)

TW̃1(t)
))

dτ

+
∫ t

t−T TW̃2(τ)
T F1∆φ2(t)

TW̃1(t)dτ

+
∫ t

t−T

(

W̃3(τ)
T T F3

(

∆φ2(τ)
TW̃1(τ)−∆φ2(t)

TW̃1(t)
))

dτ

+
∫ t

t−T TW̃3(τ)
T F3∆φ2(t)

TW̃1(t)dτ

(A.8)

L̇≤−
∫ t

t−T Z̃T MZ̃dτ+
∫ t

t−T dZ̃dτ+
∫ t

t−T (c+ ε)dτ+T
∫ t

t−T zTWzdτ

(A.8.1)

c = 1
4
W 2

max ‖D̄1(x)‖+
1
4
W 2

max ‖Ē1(x)‖+ ε+1
2
WmaxT bεx

bϕx
b2

gσmin(R)+
1

2γ2 T bεx
b2

κbφx
Wmax

(A.8.2)

W31 =W T
13 =−W32 =−W T

23=
(

1
8ms

WmaxD1(x(τ))+
F1

2

)

,

W51 =W T
15 =−W52 =−W T

25=
(

− 1
8ms

WmaxE1(x(τ))+
F3

2

)

,

W41 =W T
14 =−W42 =−W T

24 =

(

−
1

8ms

D1(x(τ))

)

,

W61 =W T
16 =−W62 =−W T

26 =

(

1

8ms

E1(x(τ))

)

.

(A.8.3)
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d1 = bεx
b f ,

d2 =
εHJI(x(τ))

ms(t)
,

d3 =
1
4
(W1(t)

T Φ̄2(t)−W1(τ)
T Φ̄2(τ))W1(τ)

T D̄1(x(τ))

+(1
2
D̄1(x(τ))+F2−T F1∆φ2(τ)

T − 1
4
D̄1(x(t))W1(t)m(t)T )W1(τ)

+1
2
bεx

bg2bφx
σmin(R)

d4 =−
1
4
(W1(t)

T Φ̄2(t)−W1(τ)
T Φ̄2(τ))W1(τ)

T Ē1(x(τ))

+(−1
2
Ē1(x(τ))+F4−T F3∆φ2(τ)

T + 1
4
Ē1(x(t))W1(t)m(t)T )W1(τ)

+ 1
2γ2 bεx

bk2bφx
.

(A.8.4)

L̇≤−
∫ t

t−T

∥

∥Z̃
∥

∥

2
σmin(M)dτ+

∫ t
t−T ‖d‖

∥

∥Z̃
∥

∥dτ+
∫ t

t−T (c+ ε)dτ

+
∫ t

t−T

(

ρ1

∥

∥Z̃(t,τ)
∥

∥+ρ2T
∥

∥Z̃(t,τ)
∥

∥

2
)2

T σmax(W )dτ

L̇≤−
∫ t

t−T

∥

∥Z̃
∥

∥

2
σmin(M)dτ+

∫ t
t−T ‖d‖

∥

∥Z̃
∥

∥dτ+
∫ t

t−T (c+ ε)dτ

+
∫ t

t−T

(

ρ2
1T

∥

∥Z̃(t,τ)
∥

∥

2
+ρ2

2T 2
∥

∥Z̃(t,τ)
∥

∥

4
+2ρ1ρ2T

∥

∥Z̃(t,τ)
∥

∥

3
)

σmax(W )dτ

L̇≤−
∫ t

t−T

(

σmin(M)−ρ2
1T σmax(W )

)∥

∥Z̃
∥

∥

2
dτ+

∫ t
t−T ‖d‖

∥

∥Z̃
∥

∥dτ+
∫ t

t−T (c+ ε)dτ

+
∫ t

t−T

(

ρ2
2T 2

∥

∥Z̃(t,τ)
∥

∥

4
+2ρ1ρ2T

∥

∥Z̃(t,τ)
∥

∥

3
)

σmax(W )dτ

L̇≤
∫ t

t−T

(

ρ2
2T 2

∥

∥Z̃(t,τ)
∥

∥

4
+2ρ1ρ2T

∥

∥Z̃(t,τ)
∥

∥

3
)

σmax(W )dτ

+
∫ t

t−T

(

(

−σmin(M)+ρ2
1T σmax(W )

)∥

∥Z̃
∥

∥

2
+‖d‖

∥

∥Z̃
∥

∥+(c+ ε)
)

dτ

≡
(

T
∫ t

t−T f (t,τ)+
∫ t

t−T g(t,τ)
)

dτ

where

f (t,τ) = ρ2
2T

∥

∥Z̃(t,τ)
∥

∥

4
σmax(W )+2ρ1ρ2

∥

∥Z̃(t,τ)
∥

∥

3
σmax(W )+ρ2

1σmax(W )
∥

∥Z̃
∥

∥

2

g(t,τ) =−σmin(M)
∥

∥Z̃
∥

∥

2
+‖d‖

∥

∥Z̃
∥

∥+(c+ ε)

(A.8.5)
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L̇≤ ∫ t
t−T

(

−σmin(M)
∥

∥Z̃
∥

∥

2
+‖d‖

∥

∥Z̃
∥

∥+(c+ ε+ ε f )
)

dτ

L̇≤−∫ t
t−T

(

∥

∥Z̃
∥

∥− ‖d‖
2σmin(M)

)2

dτ+
∫ t

t−T

(

‖d‖
2σmin(M)

)2

dτ+
∫ t

t−T

(

c+ε+ε f

σmin(M)

)

dτ≡−∫ t
t−T W3(

∥

∥Z̃
∥

∥)dτ

Then

∥

∥Z̃
∥

∥>
‖d‖

2σmin(M)
+

√

d2

4σ2
min(M)

+
c+ ε+ ε f

σmin(M)
≡ p1.

(A.9)

∥

∥W̃1(t)
∥

∥≤
√

β2TPE

β1

{[

(1+δβ2a1)
∥

∥∆φ̄2
TW̃1

∥

∥+δβ2a1εB

]}

≡
√

β2TPE

β1
(1+δβ2a1)

∥

∥∆φ̄2
TW̃1

∥

∥+ ε3

(A.9.1)
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