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Abstract  
 

The paper presents analytical and Monte Carlo simulation methods applied to the reliability evaluation of a 
system operating in two different operation states. A semi-Markov process is applied to construct the system 
operation model and its main characteristics are determined. Analytical linking of this operation model with the 
system reliability model is proposed to get a general reliability model of the system operating at two varying in 
time operation conditions and to find its reliability characteristics. The application of Monte Carlo simulation 
based on this general model to the reliability evaluation of this system is proposed as well. The exemplary 
results obtained from those two considered methods are illustrated. 
 
1. Introduction 
 

The reliability analysis of a system undergoing time-
dependent operation process very often leads to 
complicated calculations and therefore it is difficult 
to implement analytical modeling, prediction and 
optimization, especially in the case when we assume 
the system multistate reliability model and the 
multistate model of its operation process [1]-[4]. On 
the other hand, the complexity of the systems’ 
operation processes and their influence on changing 
in time the systems’ reliability parameters are very 
often met in real practice [3]-[4], [9]. Thus, the 
practical importance of an approach linking the 
system reliability models and the system operation 
processes models into an integrated general model in 
reliability assessment of real technical systems is 
evident. The Monte Carlo simulation method [8], 
[12] is a tool that sometimes allows to simplify 
solving this problem [3], [8]. All above-mentioned 
publications present general results obtained under a 
strong assumption that the system components have 
exponential conditional reliability functions at 
different operation states. To omit this assumption 
that narrows the investigation down and to get 
general solutions of the problem, at the beginning, 
we deal with the two-state reliability model of the 
system and two-state model of its operation process. 
The analytical approach to the reliability analysis of 
two-state systems subjected to two-state operation 
processes is presented and next the computer 

simulation modeling method for such systems 
reliability assessment is proposed. 
 

2. System operation process 
 

We assume that a system during its operation at the 
fixed moment ,t  ,,0+∞∈t  may be at one of two 

different operations states ,bz  2,1=b . 

Consequently, we mark by ),(tZ  ,,0+∞∈t  the 

system operation process, that is a function of a 
continuous variable ,t  taking discrete values at the 

set },{ 21 zz  of the system operation states. We 
assume a semi-Markov model [2], [4] of the system 

operation process )(tZ  and we mark by blΘ  its 
random conditional sojourn times at the operation 
states bz , when its next operation state is ,lz  

,2,1, =lb  .lb ≠   
Consequently, the operation process may be 
described by the following parameters [4]: 
- the vector 21)]0([ ×bp , ,2,1=b  of the initial 

probabilities of the system operation process 
)(tZ  staying at the particular operation states at 

the moment 0=t ; 
- the matrix 22][ ×blp  of the probabilities of the 

system operation process )(tZ  transitions 

between the operation states bz  and lz , ,2,1, =lb  

lb ≠ ; 
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- the matrix 22)]([ ×tHbl  of the conditional 
distribution functions of the system operation 

process )(tZ  conditional sojourn times blΘ  at the 
operation states, ,2,1, =lb lb ≠ . 

 
We mark by  
 

   ,,...2,1),,0),()( )(
1

)(
1 =∞∈<Θ= nttPt nnφ  

 
the distribution functions of the random variables 
 

   ,...2,1,... )(
12

)2(
12

)1(
12

)(
1 =Θ++Θ+Θ=Θ nnn

, 
 

where the variables ,,...,2,1,)(
12 nii =Θ  are 

independent random variables having identical 
distribution functions with the distribution of the 

sojourn time 12Θ , i.e.  
 

   ),()()( 1212
)(

12 tHtPtP i =<Θ=<Θ  ni ,...,2,1= , 
 
and by  
 

   ,,...2,1),,0),()( )(
2

)(
2 =∞∈<Θ= nttPt nnφ  

 
 the distribution functions of the random variables 
 

   ,...2,1,... )(
21

)2(
21

)1(
21

)(
2 =Θ++Θ+Θ=Θ nnn , 

 

where the variables ,,...,2,1,)(
21 nii =Θ  are 

independent random variables having identical 
distribution functions with the distribution of the 

sojourn time 21Θ , i.e.  
 

   ),()()( 2121
)(

21 tHtPtP i =<Θ=<Θ  ni ,...,2,1= . 
 

Realizations )(
12

iθ  and )(
21
iθ  of the random variables 

)(
12
iΘ  and ,...,2,1,)(

21 =Θ ii  are illustrated in Figure 1. 
 
Consequently, we get 
 

   )()( 12
)1(

1 tHt =φ , 

   ∫ =−= −t nn nudHutt
0

12
)1(

1
)(

1 ,...3,2),()()( φφ , 

   )()( 21
)1(

2 tHt =φ , 

   ∫ =−= −t nn nudHutt
0

21
)1(

2
)(

2 ,...3,2),()()( φφ . 

 
The following auxiliary theorems are obvious [8]. 
 

Lemma 1. If the distribution of sojourn times blΘ , 
,2,1, =lb lb ≠ , is exponential of the form 

 
   ]exp[1)( ttH blbl α−−= , ),,0 ∞∈t                      (1) 

 

then the random variable )(n
bΘ  have Erlang 

distribution of order n, i.e. 
 

   dtt
n

t
t

t

bl

nn
bln

b ∫ −
−

=
−

0

1
)( ]exp[
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1
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i

t
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i
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bl αα
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, ),,0 ∞∈t          (2) 

              ,2,1, =lb  lb ≠ . 
 
Lemma 2. If the distribution of sojourn times blΘ  is 

normal with the parameters ,, blblm σ ,2,1, =lb  
lb ≠ , i.e. 

 

   

( )

,
2

1
)()(
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2
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∫
−

−
==

t mt

bl
mNbl dtetFtH bl

bl

blbl

σ
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   ),,0 ∞∈t                                                              (3) 

 

then the random variable )(n
bΘ  have normal 

distribution with parameters blbl nmn σ⋅⋅ , , i.e. 
 

   )()(
),(

)( tFt
blbl nmnN

n
b σφ ⋅⋅= , ),0 ∞∈t .                   (4) 

 

Lemma 3. If the distribution of sojourn times blΘ  is 

uniform with the parameters ,, blbl yx ,2,1, =lb  
lb ≠ , i.e. 

 

   
blbl

bl
bl xy

xt
tH

−
−

=)( , ,, blbl yxt ∈                          (5) 

 

then the random variable )(n
bΘ  have the distribution 

given below [11] 
 

   ( ) ,)()1()()(
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







−=ξφ  
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where  
 

   ,
)()!1(

1
)(

n
blbl xyn

n
−−

=ξ  
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   








−
−=

blbl xy

nt
tnn :),(~ , 

 
whereas  ⋅  denotes the ceiling function. 
Further, we mark by  
 

   ,,...2,1),,0),()( )()( =∞∈<Θ= nttPt nnψ  

 
the distribution functions of the random variables 
 

   ,...2,1,)(
2

)(
1

)( =Θ+Θ=Θ nnnn  .                           (7) 

 
and we have 
 

   ),,0,)()()(
0

)(
2

)(
1

)( ∞∈−= ∫ tudutt
t

nnn φφψ             (8) 

   .,...2,1=n  
 
From Lemmas 1 – 3 we get the following Theorems. 
 

Theorem 1. If the distribution of sojourn times 12Θ , 

21Θ , are exponential of the form (1), then the 

distribution function of the random variables )(nΘ  

defined by (7) is i.e. 
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where 
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Proof. Since by the distribution functions )(12 tH  and 

)(21 tH  of 12Θ  and 21Θ  respectively are given by (1) 

then the convolution of )(12 tH  and )(21 tH  is given 
by 
 

   
1221

2112

0
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1221

1)()(
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−
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+=−
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∫
ttt ee

udHutH . 

 
Therefore, according to (8), the distribution function 

of )(nΘ  is the nth-fold convolution of the form (9). 

Theorem 2. If the distribution of sojourn times 12Θ , 

21Θ , are normal of the form (3), then the distribution 

function of the random variables )(nΘ  defined by (7) 

is normal with parameters ),( 2112 mmn +⋅  

)( 2
21

2
12 σσ +⋅n , i.e. 

 

   ),,0),()(
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Theorem 3. If the distribution of sojourn times 12Θ , 

21Θ , are uniform of the form (5), then the 

distribution function of the random variables )(nΘ  

defined by (7) is given by (8), where )()(
1 tnφ  and 

)()(
2 tnφ  are defined by (6). 

 
If we denote by )(tN  the number of changes of the 
system operation process’ states before the moment 
t , by ),(tNb  ,2,1=b  the number of changes of the 
system operation process’ states before the moment 
t  when its operation process at the initial 
moment 0=t  was in the operation state 

,bz ,2,1=b  for ),,0 ∞∈t we immediately get the 

following results [8].  
 
Theorem 4. The distribution of the number )(tNb , 

,2,1=b  lb ≠ , of changes of the system operation 

process’ states before the moment t , ),0 ∞∈t , is 

given by  
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for ),,0 ∞∈t ,...2,1,0=n , where 1)()0( =tψ  and 

)()( tnψ  for ,...2,1=n , are determined by (7). 

 
Proof. For ,0=n we get 
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which after considering that 1)()0( =tψ , is consistent 

with (10) and (12) for 0=n . 
Generally, for ,...2,1=n , we have  
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which also is consistent with (10) and (12). 
Moreover, we get  
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which after considering that 1)()0( =tψ , is consistent 

with (11) and  (13) for .0=n  
Generally, for ,...,2,1=n , we have  
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which is consistent with (11) and (13). This 
completes the proof.  � 
 
From Theorem 4, we get the following result. 
 
Corollary 1. The distribution of the number )(tN  of 
changes of the system operation process’ states 
before the momentt , ),0 ∞∈t , are given by  
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for ),,0 ∞∈t ,...2,1,0=n , where 1)()0( =tψ  and 

)()( tnψ  for ,...2,1=n , are determined by (7).  

 
3. Reliability of system undergoing a two-
state operation process 
 

We assume that the considered two-state system 
reliability depends on its operation state it is 
operating and on the number of changes of the 
operation process states. We define the system 
conditional reliability function at the operation state 

,bz ,2,1=b  after ,k  ,,...1,0=k  changes of its 
operation process states  
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k

b
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for ),,0 ∞∈t  where ,2,1,)( =bT b
k  ,,...1,0=k  is the 

lifetimes of the system at the operation state ,bz  
after k changes of its operation process states with 
the conditional distribution functions 
 

   )()( )()( tTPtF b
k

b
k ≤= ),(1 )( tR b

k−=                    (17) 
 



Journal of Polish  Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 5, Number 1, 2014 

 

 129

for ).,0 ∞∈t  Under those assumptions, we want to 

find the unconditional reliability function of the 
system subjected to two-state operation process 
 
   )()( tTPt >=R , ),,0 ∞∈t  

 
where T  is the unconditional lifetime of the system 
with the unconditional distribution function  
 
   )()( tTPt ≤=F , ).,0 ∞∈t  

 
3.1. Analytical approach to system reliability 
evaluation 
 

The application of the formula for total probability 
and Corollary 1 results in the following proposition. 
 
Theorem 5. The unconditional reliability function of 
the system subjected to two-state operation process is 
given by 
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for ),,0 ∞∈t    ,...,1,0=k  ,2,1=b  where the 

distribution ))(( ktNP = , ),,0 ∞∈t  ,,...1,0=k  is 

determined by (14)-(15) and )()( tR b
k , ),,0 ∞∈t  

,2,1=b  ,,...1,0=k  are the conditional reliability 
functions of the system defined by (16). 
 
Its particular case for the Weibull conditional 
reliability functions is as follows. 
 
Corollary 2. If the conditional reliability functions of 
the system subjected to two-state operation process 
are  
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for ),,0 ∞∈t    ,...,1,0=k  ,2,1=b  then the 
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subjected to two-state operation process is given by 
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for ),,0 ∞∈t    ,...,1,0=k  ,2,1=b  where the 

distribution ),)(( ktNP =  ),,0 ∞∈t  ,,...1,0=k  is 

determined by (14)-(15).  
 

Remark 1. If we put 1)( =b
kβ , ,2,1,...,1,0 == bk  in 

(24), we get appropriate result for the exponential 
distribution. 
 
3.2. Monte Carlo approach to system 
reliability evaluation 
 

We denote by )(i
blθ , lblb ≠= ,2,1, , ,

2
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N
i =  the 

realizations of the conditional sojourn times blΘ  of 
the object operation process generated from the 
distribution blH , where N  is the even number of the 
system lifetime realizations. Those realizations can 
be generated according to the formulae 
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where )(1 hHbl

−  is the inverse function of the 
distribution function )(tHbl  and h  is a randomly 
generated number from the uniform distribution on 
the interval 1,0 .  
For the considered distributions (1), (5), the formula 
(19) takes respectively the following forms:  
- for the exponential distribution  
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- for the uniform distribution  
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In the case of normal distribution defined by (3) 
instead of using (19), we generate two random 
numbers 1h  and 2h  from the uniform distribution on 
the unit interval and call one of the predefined 
functions [2] 
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Realizations of the considered system operation 
process are presented in Figure 1. 
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Figure 1. Realizations of the system operation 
process 
 
The realizations of the object conditional lifetimes 

)(b
kt , 2,1=b , ,...1,0=k , are generated according to 

the distribution (17), i.e. they are generated by the 
sampling formula 
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by (17).  
 
In the case of Weibull distribution, according to (24), 
we have  
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for 0≥t , ,2,1=b ,...1,0=k , and the realizations of 
the system conditional lifetimes take the form 
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where )(b

kλ , )(b
kβ , ,2,1=b ,...1,0=k , are the Weibull 

distribution parameters existing in (24) and (20) and 
f  is a randomly generated number from the uniform 

distribution on the interval 1,0 . 
 
In the case of exponential distribution, the formula 
(20) takes the form 
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for 0≥t , ,2,1=b ,...1,0=k , and the realizations of 
the system conditional lifetimes take the form 
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where )(b

kλ , ,2,1=b ,...1,0=k , are the failure rates 
existing in (22) and f  is a randomly generated 
number from the uniform distribution on the interval 

1,0 . 
 
3.2.1. The procedure of Monte Carlo 
simulation application to system reliability 
characteristics determination 
 

We can apply the Monte Carlo simulation method 
based on the result of Corollary 2, according to a 
general Monte Carlo simulation scheme presented in 
Figure 2.  
At the beginning, we fix the following parameters: 
- the number }0{\N∈N  of iterations (runs of the 

simulation); 
- the vector of the initial probabilities )]0([ bp , 

,2,1=b  of the system operation process )(tZ  
states at the moment 0=t  defined in Section 2; 

- the matrix of the probabilities ][ blp , ,2,1, =lb  
lb ≠  of the system operation process )(tZ  

transitions between the various system operation 
states defined in Section 2; 

Next, in the program, we define functions )(i
blθ  and 

)(b
kt , ,

2
,...,2,1,,2,1,

N
ilblb =≠=  according to (6)-

(11). 
Further we introduce: 
- N∈j  as the subsequent iteration in the main loop 

and set 1=j ; 
- N∈k  as the number of system operation process 

states changes and set 0=k ; 
- )∞∈ ,0jt , Nj ,...,2,1=  as the system 

unconditional lifetime realization and set 0=jt . 
As the algorithm progresses, we draw a random 
number q  from the uniform distribution on the 
interval 1,0 . Based on this random value, the 
realization )(qzb , ,2,1=b  of the system operation 
process initial operation state at the moment 0=t  is 
generated according to the formula  



Journal of Polish  Safety and Reliability Association 
Summer Safety and Reliability Seminars, Volume 5, Number 1, 2014 

 

 131

 

   




<≤
<≤

=
.1)0(,

),0(0,
)(

12

11

qpz

pqz
qzb . 

 
In the next step, the realization lz , ,,2,1 bll ≠=  

of the system operation process consecutive 
operation state is generated. If ,1=b  then 

,2zzl = else .1zzl =  

Further, we generate a random number h  from the 
uniform distribution on the interval 1,0 , on which 

we put into the formula (6) obtaining the realization 
)(i

blθ , ,,...,2,1,,2,1, nilblb =≠= . Subsequently, we 
generate a random number f  uniformly distributed 

on the interval 1,0 , which we put into the formula 

(11) obtaining the realization )(b
kt , 2,1=b , ,...1,0=k . 

If the realization of the empirical conditional sojourn 
time is not greater than the realization of the system 
conditional lifetime, we add to the system 

unconditional lifetime realization jt  the value )(i
blθ . 

The realization jt  is recorded, lz  is set as the initial 

operation state and 1=k . 
 
We generate another random numbers fhg ,,  from 
the uniform distribution on the interval 1,0  
obtaining the realizations lz , )(i

blθ  and )(b
kt , ,2,1, =lb  

lb ≠ . Each time we compare the realization of the 
conditional sojourn time )(i

blθ  with the realization of 
the system conditional lifetime )(b

kt . If )(i
blθ  is greater 

than )(b
kt , we add to the sum of the realizations of the 

conditional sojourn times )(i
blθ  the realization )(b

kt  
and we obtain and record an system unconditional 
lifetime realization jt . Thus, we can proceed 
replacing j with 1+j  and shift into the next iteration 
in the loop if .Nj <  In the other case, we stop the 
procedure. 
Using the above procedure, the histogram of the 
system unconditional lifetime can be found and the 
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Figure 2. Monte Carlo algorithm for a system reliability evaluation 
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empirical mean value and the standard deviation of 
the system unconditional lifetime can be calculated 
according to the formulae  
 

   ∑
=

=
N

j
jt

N
T

1

1
,                                                     (23) 

 

   
( )

N

Tt
N

j
j∑ −

= =1

2

σ ,                                            (24) 

 
where N  is the number of the system lifetime 
realizations and jt , ,,...,2,1 Nj =  are the object 

unconditional lifetime realizations.  
 
The input data for the system operation process are: 
- the vector of the initial probabilities of the system 

operation process )(tZ  staying at the particular 

operation states at the moment 0=t  
 

         ]6.0,4.0[)]0([ 21 =×bp ;                                  (25) 
 

- the matrix of the probabilities of the system 
operation process )(tZ  transitions between the 
operation states  

 

         







=× 01

10
][ 22blp ; 

 
- the matrix of the conditional distribution 

functions of the system operation process )(tZ  

sojourn times )(i
blθ , nilblb ,...,2,1,,2,1, =≠=  at 

the operation states is given in Table 1. 
 
The input data for the system reliability are given in 
Table 2. 
 
For the cases considered in Table 1 and Table 2, the 
realizations jt , ,,...,2,1 Nj =  for 1000000=N  of 

the system unconditional lifetimes T are illustrated in 
the form of the histograms are presented in 
Figures 3-10 and their empirical  mean values and 
standard deviations calculated according to (23) and 
(24) are given in Table 3. 

Table 1. Exemplary conditional distribution functions of sojourn times of operation process 
 

Case Name CDF Parameters 

1O  Exponential distribution 
]exp[1)( ttH blbl α−−= , 

),,0 ∞∈t 2,1, =lb  
,29012 =α  

7121 =α  

2O  Normal distribution 
)()( ),( tFtH

blblmNbl σ= , 

),,0 ∞∈t 2,1, =lb  

,29012 =m ,1012 =σ  
,7121 =m 521 =σ  

3O  Focused uniform distribution blbl

bl
bl xy

xt
tH

−
−=)( , 

,, blbl yxt ∈ 2,1, =lb  

,27012 =x  ,30512 =y  
,6221 =x  8012 =y  

4O  Stretch uniform distribution blbl

bl
bl ab

at
tH

−
−

=)( , 

,, blbl yxt ∈ 2,1, =lb  

,012 =x  ,57512 =y  
,021 =x  14212 =y  

 
Table 2. Exemplary conditional reliability functions 
 

Case Name Reliability functions Parameters 

1R  
Exponential  
distribution 

],exp[)( )()( ttR b
k

b
k λ−=  

),,0 ∞∈t 2,1, =lb , .,...2,1,0=k  

,
1

12
00206667.0)1(

+
+=

k

k
kλ  

1

12
00144001.0)2(

+
+=

k

k
kλ  

2R  
Weibull  

distribution 
],exp[)(

)()()( b
kttR b

k
b

k
βλ−= , 

),,0 ∞∈t 2,1, =lb , .,...2,1,0=k  

,
1
12

00000335.0
2

)1(









+
+=

k

k
kλ  

,
1

12
00000163.0

2
)2(







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2)2()1( == kk ββ  
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On the basis of that results, it is possible to try to 
formulate and to verify the hypotheses on the forms 
of the system reliability functions. Unfortunately, 
fixing the system reliability functions in most cases 
is not successful. 
 
4. Conclusion 
 

The discussed problem seems to be justified by 
practice because of the natural omitting the usually 
used strong assumption on the exponentiality of the 
system reliability functions at the particular operation 
states. This change sensibility is evident and its 
influence on the results is clearly showed in the form 

of the histograms and numerical characteristics 
presented in the paper. Both the analytical method 
and the simulation method should be modified and 
developed in the direction of more than two-state 
system operation processes to get results better 
fitting to real technical systems. 
 
 
 
 
 
 

 
Table 3. The mean values and the standard deviations of the system unconditional lifetime 
 

Case Mean value [days] Standard deviation [days] 
1O  and 1R  ≈T 350.912 ≈σ 308.114 

2O  and 1R  ≈T 355,432 ≈σ 305.037 

3O  and 1R  ≈T 355.502 ≈σ 305.786 

4O  and 1R  ≈T 353.673 ≈σ 306.396 

1O  and 2R  ≈T 541.649 ≈σ 355,998 

2O  and 2R  ≈T 569.715 ≈σ 403.316 

3O  and 2R  ≈T 568.648 ≈σ 402.084 

4O  and 2R  ≈T 532.467 ≈σ 349.989 
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Figure 3. The graph of the histogram of the system lifetimes (in cases 1O  and 1R ) 
 

 
 

Figure 4. The graph of the histogram of the system lifetimes (in cases 2O  and 1R ) 
 

 
 

Figure 5. The graph of the histogram of the system lifetimes (in cases 3O  and 1R ) 
 

 
 

Figure 6. The graph of the histogram of the system lifetimes (in cases 4O  and 1R ) 
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Figure 7. The graph of the histogram of the system lifetimes (in cases 1O  and 2R ) 
 

 
 

Figure 8. The graph of the histogram of the system lifetimes (in cases 2O  and 2R ) 
 

 
 

Figure 9. The graph of the histogram of the system lifetimes (in cases 3O  and 2R ) 
 

 
 

Figure 10. The graph of the histogram of the system lifetimes (in cases 4O  and 2R ) 
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