PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural changes of Scots pine wood caused by local pressing in the longitudinal direction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An indentation can be formed when inserting a punch along wood fibers at the ends of blanks. The aim of this research is to study structural changes during local compression of wood in longitudinal pressing. Punches of prismatic shape were inserted into samples of Scots pine wood with different moisture content. The stages of wood deformation during the process were analyzed. The author then evaluated changes in the macrostructure of the wood and determined the conditions for obtaining a good-quality indentation. This led to a regression model enabling prediction of the depth of the densified zone. Its size is no more than 105% of the depth of penetration. Images of the densified zone were obtained using a scanning electron microscope, and changes in its microstructure were evaluated. The process of forming a “core” causes uncritical structural changes in the boundary undeformed sections. This underlines the possibility of using local pressing technology along the fibers as an alternative to traditional milling or drilling in order to form grooves and blind holes, for example for such joints as tongue and groove or mortise and tenon.
Rocznik
Strony
23--39
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Department of Machines and Technologies for Woodworking, Vyatka State University, Kirov, Russia
Bibliografia
  • Ahmed S.A., Moren T., Hagman O., Cloutier A., Fang C.H., Elustondo D. [2013]: Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro--mechanical compression. Journal of Materials Science 48 [24]: 8571-8579. DOI: 10.1007/s10853-013-7679-9
  • Ayata U., Gurleyen L., Esteves B. [2017]: Effect of heat treatment on the surface of selected exotic wood species. Drewno 60 [199]: 105-116. DOI: 10.12841/wood.1644--3985.198.08
  • Bami L.K., Mohebby B. [2011]: Bioresistance of poplar wood compressed by combined hydro-thermo-mechanical wood modification (CHTM): Soft rot and brown-rot. International Biodeterioration & Biodegradation 65 [6]: 866-870. DOI: 10.1016/j.ibiod.2011.03.011
  • Benabou L. [2008]: Kink band formation in wood species under compressive loading. Experimental Mechanics 48 [5]: 647-656. DOI: 10.1007/s11340-007-9098-9
  • Benabou L. [2010]: Predictions of compressive strength and kink band orientation for wood species. Mechanics of Materials 42 [3]: 335-343. DOI: 10.1016/j.mechmat.2009.11.015
  • Blomberg J., Persson B. [2004]: Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. Journal of Wood Science 50 [4]: 307-314. DOI: 10.1007/s10086-003-0566-2
  • Brabec M., Tippner J., Sebera V., Milch J., Rademacher P. [2015]: Standard and non-standard deformation behaviour of European beech and Norway spruce during compression. Holzforschung 69 [9]: 1107-1116. DOI: 10.1515/hf-2014-0231
  • Darwis A., Wahyudi I., Dwianto W., Cahyono T.D. [2017]: Densified wood anatomical structure and the effect of heat treatment on the recovery of set. Journal of the Indian Academy of Wood Science 14 [1]: 24-31. DOI: 10.1007/s13196-017-0184-z
  • Džinčić I., Živanić D. [2014]: The influence of fit on the distribution of glue in oval tenon/mortise joint. Wood Research 59 [2]: 297-302 [accessed: 04.12.2017]. Available from: http://www.centrumdp.sk/wr/02/08.pdf
  • Fojutowski A., Noskowiak A., Kropacz A. [2009]: Physical and mechanical properties and resistance to fungi of Scots pine and birch wood modified thermally and using natural oil. Drewno 52 [181]: 43-62 [accessed: 04.12.2017]. Available from: http://drewnowood.pl/pobierz-142
  • Gaff M., Gaborik J. [2014]: Evaluation of wood surface quality after 3D molding of wood by pressing. BioResources 9 [3]: 4468-4476 [accessed: 04.12.2017]. Available from: http://stargate.cnr.ncsu.edu/
  • Gaff M., Sarvašova-Kvietkova M., Gašparik M., Slavik M. [2016]: Dependence of roughness change and crack formation on parameters of wood surface embossing. Wood Research 61 [1]: 163-174 [accessed: 04.12.2017]. Available from: https://www.researchgate.net/
  • Heger F., Giroux M., Welzbacher C., Rapp A.O., Navi P. [2004]: Mechanical and durability performance of THM-densified wood. Proceedings of: Final Workshop Cost Action E22, Environmental Optimization of Wood Protection, Portugal, 22-23 March 2004. Lisboa – Portugal: 1-10 [accessed: 04.12.2017]. Available from: https://www.researchgate.net/
  • Herrera R., Krystofiak T., Labidi J., Llano-Ponte R. [2016]: Characterization of thermally modified wood at different industrial conditions. Drewno 59 [197]: 151-164. DOI: 10.12841/wood.1644-3985.C05.15
  • Hesselbach J., Hoffmeister H.W., Loohs T. [2007]: Punching in industrial wood machining: an alternative production process to drilling. Production Engineering 1 [4]: 365-370. DOI: 10.1007/s11740-007-0061-5
  • Ito Y., Tanahashi M., Shigematsu M., Shinoda Y., Ohta C. [1998]: Compressive-molding of wood by high-pressure steam-treatment: Part I. Development of compressive molded squares from thinnings. Holzforschung 52 [2]: 211-216. DOI: 10.1515/hfsg.1998.52.2.211
  • Kollmann F.P., Kuenzi E.W., Stamm A.J. [1975]: Principles of wood science and technology. Vol. II Wood based materials. Springer-Verlag New York Heidelberg, Berlin [accessed: 04.12.2017]. Available from: http://www.springer.com/us/book/9783642879333
  • Kučera L.J., Bariska M. [1982]: On the fracture morphology in wood. Wood Science and Technology 16 [4]: 241-259 [accessed: 04.12.2017]. Available from: https://link.springer.com/article/10.1007%2FBF00353147?LI=true
  • Kultikova E.V. [1999]: Structure and properties relationships of densified wood. M.Sc. Thesis, Virginia Polytechnic Institute and State University, p. 139
  • Kutnar A., Sernek M. [2007]: Densification of wood. Acta Silvae et Ligni [82]: 53-62 [accessed: 04.12.2017]. Available from: http://sl.gozdis.si/zbgl/2007/zbgl-82-6.pdf
  • Kutnar A., Sandberg D., Haller P. [2015]: Compressed and moulded wood from processing to products. Holzforschung 69 [7]: 885-897. DOI: 10.1515/hf-2014-0187
  • Kwon J.H., Shin R.H., Ayrilmis N., Han T.H. [2014]: Properties of solid wood and laminated wood lumber manufactured by cold pressing and heat treatment. Materials & Design (1980–2015) [62]: 375-381. DOI:
  • Lenth C.A., Kamke F.A. [2001]: Moisture dependent softening behavior of wood. Wood and Fiber Science 33 [3]: 492-507 [accessed: 04.12.2017]. Available from: https://wfs.swst.org/index.php/wfs/article/viewFile/1635/1635
  • Mitsui K., Takada H., Sugiyama M., Hasegawa R. [2001]: Changes in the properties of light-irradiated wood with heat treatment. Part 1. Effect of treatment conditions on the change in colour. Holzforschung 55 [6]: 601-605. DOI: 10.1515/HF.2001.098
  • Mohebby B., Sharifnia-Dizboni H., Kazemi-Najafi S. [2009]: Combined hydro-hermomechanical modification (CHTM) as an innovation in mechanical wood modification. Proceedings of: The Fourth European Conference on Wood Modification, 27-29 April 2009. Stockholm: 353-362 [accessed: 04.12.2017]. Available from: http://www.gbv.de/dms/tib-ub-hannover/620446404.pdf
  • Moran P.M., Liu X.H., Shih C.F. [1995]: Kink band formation and band broadening in fiber composites under compressive loading. Acta Metall Mater 43 [8]: 2943-2958. DOI: 10.1016/0956-7151(95)00001-C
  • Morsing N. [2000]: Densification of wood. The influence of hygrothermal treatment on compression of beech perpendicular to the grain. Department of Structural Engineering and Materials Technical University of Denmark [accessed: 04.12.2017]. Series R, (79). Available from: http://orbit.dtu.dk/fedora/objects/orbit:83480/datastreams/file_5301406/content
  • Nairn J.A. [2007]: Numerical simulations of transverse compression and densification in wood. Wood and Fiber Science 38 [4]: 576-591 [accessed: 04.12.2017]. Available from: https://wfs.swst.org/index.php/wfs/article/view/2
  • Navi P., Girardet F. [2000]: Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54 [3]: 287-293. DOI: 10.1515/HF.2000.048
  • Poulsen J.S., Moran P.M., Shih C.F., Byskov E. [1997]: Kink band initiation and band broadening in clear wood under compressive loading. Mechanics of Materials 25 [1]: 67-77. DOI: 10.1016/S0167-6636(96)00043-9
  • Rautkari L., Laine K., Laflin N., Hughes M. [2011]: Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. Journal of Materials Science 46 [14]: 4780-4786 [accessed: 04.12.2017]. Available from: https://link.springer.com/article/10.1007/s10853-011-5388-9
  • Reiterer A., Stanzl-Tschegg S.E. [2001]: Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mechanics of Materials 33 [12]: 705-715. DOI: 10.1016/S0167-6636(01)00086-2
  • Rubleva O.A. [2011]: Pokazateli tverdosti dna proushin, poluchennyh torcovym pressovaniem drevesiny (Indicators of the hardness of the groove's bottom, formed by pressing along the grains). Proceedings of: Aktual'nye problemy lesnogo kompleksa (Actual problems of the forest complex), November 2011. Bryansk: 221-224 [accessed: 04.12.2017]. Available from: https://cyberleninka.ru/article/n/pokazateli-tverdosti-dnaproushin-poluchennyh-tortsovym-pressovaniem-drevesiny
  • Rubleva O.A. [2013a]: Formation of rectangular tenons by mechanical pressing method. Forestry Engineering Journal 4 [12]: 126-133 [accessed: 04.12.2017]. Available from: http://lestehjournal.ru/journal/2013/no-4/formirovanie-pryamougolnyh-shipov-sposobom-torcovogo-pressovaniya. DOI: 10.12737/2191
  • Rubleva O.A. [2013b]: Sposob formirovaniya ehlementov shipovyh soedinenij derevyannyh zagotovok (Method of finger joint shaping in wood blanks). Patent RF No. 2471614 [accessed: 04.12.2017]. Available from: http://www.freepatent.ru/patents/2471614
  • Schrepfer V., Schweingruber F.H. [1998]: Anatomical structures in reshaped press-dried wood. Holzforschung – International Journal of the Biology, Chemistry, Physics and Technology of Wood 52 [6]: 615-622. DOI: 10.1515/hfsg.1998.52.6.615
  • Sliker A. [1985]: Orthotopic strains in compression parallel to grain tests. Forest Products Journal 35 [11-12]: 19-26 [accessed: 04.12.2017]. Available from: https://eurekamag.com/research/001/423/001423090.php#close
  • Spiridonov A.A. [1981]: Planirovanie ehksperimenta pri issledovanii tekhnologicheskih processov (Planning an experiment in the study of technological processes). Moscow, Mashinostroenie [accessed: 04.12.2017]. Available from: http://i.booksgid.com/web/online/24787
  • Tabarsa T., Chui Y.H. [2007]: Stress-strain response of wood under radial compression. Part I. Test method and influences of cellular properties. Wood and Fiber Science 32 [2]: 144-152. DOI: 10.1179/wsc.2007.17.6.333
  • Zawadzki J., Gawron J., Antczak A., Klosinska T., Radomski A. [2016]: The influence of heat treatment on the physico-chemical properties of pinewood (Pinus sylvestris L.). Drewno 59 [196]: 49–57. DOI: 10.12841/wood.1644-3985.135.04
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32bd2449-d011-4e9c-82cb-bd4a56d9a627
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.