PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A Frontier Statistical Approach Towards Online Tool Condition Monitoring and Optimization for Dry Turning Operation of SAE 1015 Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research study intends to develop an online tool condition monitoring system and to examine scientifically the effect of machining parameters on quality measures during machining SAE 1015 steel. it is accomplished by adopting a novel microflown sound sensor which is capable of acquiring sound signals. The dry turning experiments were performed by employing uncoated, TiAlN, TiAlN/WC-C coated inserts. The optimal cutting conditions and their influence on flank wear were determined and predicted value has been validated through confirmation experiment. During machining, sound signals were acquired using Ni DAQ card and statistical analysis of raw data has been performed. Kurtosis and I-Kaz coefficient was determined systematically. The correlation between flank wear and I-Kaz coefficient was established, which fits into power-law curve. The neural network model was trained and developed with least error (3.7603e-5). It reveals that the developed neural network can be effectively utilized with minimal error for online monitoring.
Słowa kluczowe
Twórcy
  • Kongu Engineering College, Department of Mechanical Engineering, Perundurai - 638060, Tamil Nadu State, India
  • Kongu Engineering College, Department of Mechanical Engineering, Perundurai - 638060, Tamil Nadu State, India
  • Kongu Engineering College, Department of Mechatronics Engineering, Perundurai - 638060, Tamil Nadu State, India
  • Kongu Engineering College, Department of Mechanical Engineering, Perundurai - 638060, Tamil Nadu State, India
  • Bionanotechnologyresearch Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Department of Engineering, Faculty of Science and Engineering, University of Hull, HU6 7RX, United Kingdom
Bibliografia
  • [1] M. Noordin, V. Venkatesh, S. Sharif, J. Mater. Process. Tech. 185 (1-3), 83-90 (2007). doi:10.1016/j.jmatprotec.2006.03.137
  • [2] C. Moganapriya, M. Vigneshwaran, G. Abbas, A. Ragavendran, V.C. Harissh Ragavendra, R. Rajasekar, Mater. Today, Proceeding (2020).
  • [3] A.M. Ravi, S.M. Murigendrappa, P.G. Mukunda, T. Indian I. Metals 67 (4), 485-502 (2014). doi:10.1007/s12666-013-0369-0
  • [4] A.P. Kulkarni, V.G. Sargade, Mater. Manuf. Process 30 (6), 748-755 (2015). doi:10.1080/10426914.2014.984217
  • [5] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, S. Jerome, Mater. Today. Proceeding 5 (2), 8532-8538 (2018). doi:10.1016/j.matpr.2017.11.550
  • [6] G.C. Rosa, A.J. Souza, E.V. Possamai, H.J. Amorim, P.D. Neis, Wear 376, 172-177 (2017). doi:10.1016/j.wear.2017.01.088
  • [7] A. Alok, M. Das, Measurement 133, 288-302 (2019). doi:10.1016/j.measurement.2018.10.009
  • [8] R. Yigit, E. Celik, F. Findik, S. Koksal, Int. J. Refract. Hard. Met. 26 (6), 514-524 (2008). doi:10.1016/j.ijrmhm.2007.12.003
  • [9] R. Horváth, Á. Drégelyi-Kiss, G. Mátyási, Acta Polytech. Hung. 11 (2), 137-147 (2014).
  • [10] R. Kumar, P.S. Bilga, S. Singh, J. Clean Prod. 164, 45-57 (2017). doi:10.1016/j.jclepro.2017.06.077
  • [11] M.K. Gupta, P. Sood, V.S. Sharma, J. Clean Prod. 135, 1276-1288 (2016). doi:10.1016/j.jclepro.2016.06.184
  • [12] S. Pai, T. Nagabhushana, Handbook of Research on Emerging Trends and Applications of Machine Learning, 2020 IGI Global.
  • [13] A.K. Jain, B.K. Lad, J. Intell. Manuf. 30 (3), 1423-1436 (2019). doi:10.1007/s10845-017-1334-2
  • [14] R. Teti, K. Jemielniak, G. O’donnell, D. Dornfeld, CIRP Ann. 59(2), 717-739 (2010). doi:10.1016/j.cirp.2010.05.010
  • [15] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, R. Karthick, Arch. Metall. Mater. 62 (3), 1827-1832 (2017). doi:10.1515/amm-2017-0276
  • [16] H.B. Ulas,T. Indian I. Metals 67 (6), 869-879 (2014). doi:10.1007/s12666-014-0410-y
  • [17] S. Thangarasu, S. Shankar, T. Mohanraj, K. Devendran, P. I. Mech. Eng. C.-J. Mec. 234 (1), 329-342 (2019).
  • [18] J.A. Ghani, M. Rizal, M.Z. Nuawi, C.H. Che Haron, M.J. Ghazali, M.N.A. Rahman. Trans. Tech. Publ. 2010.
  • [19] S. Oraby, D. Hayhurst, Int. J. Mach. Tools Manuf. 44 (12-13), 1261-1269 (2004). doi:10.1016/j.ijmachtools.2004.04.018
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32bb9639-fd6e-46b9-83d1-c9e3c75df460
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.