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MogANApriYA ChiNNAsAMY 1, rAjAsekAr rAThANAsAMY 1*, goBiNATh VeLu kALiYANNAN 2,  
prABhAkArAN pArAMAsiVAM 1, sArAVANA kuMAr jAgANAThAN 3,4,5

A Frontier StAtiSticAl ApproAch towArdS online tool condition Monitoring  
And optiMizAtion For dry turning operAtion oF SAe 1015 Steel

This research study intends to develop an online tool condition monitoring system and to examine scientifically the effect of 
machining parameters on quality measures during machining sAe 1015 steel. it is accomplished by adopting a novel microflown 
sound sensor which is capable of acquiring sound signals. The dry turning experiments were performed by employing uncoated, 
TiAlN, TiAlN/WC-C coated inserts. The optimal cutting conditions and their influence on flank wear were determined and pre-
dicted value has been validated through confirmation experiment. During machining, sound signals were acquired using Ni DAQ 
card and statistical analysis of raw data has been performed. kurtosis and i-kaz coefficient was determined systematically. The 
correlation between flank wear and i-kaz coefficient was established, which fits into power-law curve. The neural network model 
was trained and developed with least error (3.7603e-5). it reveals that the developed neural network can be effectively utilized 
with minimal error for online monitoring. 
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1. introduction

in recent years, the manufacturing sector has seen many 
transformations. The emphasis is on cost savings, quality 
growth, elimination of downtime, failure, and waste. owing to 
environmental health objectives of machining, dry hard turning 
has positive effect in manufacturing [1]. The machining at-
tributes can be increased by versatile characteristics of cutting 
tools such as hot strength, wear resistance, thermal and chemical 
stability. in recent times, the hard coating of tool inserts has been 
intensively studied. several depositions and coating methods 
for friction reduction and wear protection for cutting tools have 
been reported [2,3]. 

At present, coating materials such as TiN, TiCN, TiAlN, and 
so on are often used on cutting tools due to improved behavior 
of tribology, higher resistance to oxidation at high temperatures 
[4,5]. The mechanical properties of inserts are significantly 
enhanced by these coatings. The author has conducted tests to 
evaluate the machinability of Aisi 420C stainless steel through 
TiAlN ultrafine coated cutting tool under various cutting condi-

tions. The cutting speeds were found to control the life of the 
tool rather than other parameters [6,7]. 

in the hard machining process, Yigit et al. measured the 
influence of input parameters with 10.5 mm thick multilayer 
insert to reduce tool wear and surface roughness through op-
timization [8]. using pCBN wiper tool in steel Aisi h13, the 
author employed rsM for optimizing material removal rate as 
well as machine life, cutting force, and minimal surface rough-
ness [9]. Taguchi method was employed to optimize various 
input parameters to reduce surface roughness, energy usage, and 
enhance material removal rate [10] . gupta et al. used grade 2 
titanium alloy containing cubic nitride boron (CBN) inserts using 
cutting fluids to optimize their input through particle swarm and 
bacterial foraging algorithm [7,11].

Today, research focuses on the development of completely 
automated online tool condition monitoring system (TCMs) 
which are capable to recognize the tool’s state under minimum 
human supervision without interruption of the machining 
process. The effort is finally directed towards developing an 
automated control system that should have the ability to detect, 
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analyze, learn through knowledge, and correct errors [12]. Typi-
cal TCMs framework requires the following elements to replicate 
human intervention [12]: 
•	 Sensor	technologies	
•	 Feature	extraction.
•	 Decision	making	algorithm

Valuable information on the process and state of the cutting 
tool can be provided through sound generated duting machining. 
some researchers considered the sound to be a source of knowl-
edge about the machining operation, tool, and machine. They also 
utilized sound signals to monitor tool wear [13]. Teti et al. exam-
ined different sound-measuring techniques to bring flank-wear 
measurements and proposed that audible sound energy is one of 
the most realistic among various sensing techniques [14]. Tool 
condition can be monitored from sound signals, cutting force, 
vibration signals, acoustic emission, temperature, surface finish 
etc. To the best of authors knowledge, tool condition monitoring 
with very near field acoustic sensor (Microflown sensor) is not 
found elsewhere in the literature. This work focuses on optimiz-
tion of turning parameters and coating material to enhance tool 
life and design of tool condition monitoring system with i-kaz 
coefficeints using Artificial Neural Network. 

2. Materials and methods 

The overall workflow of research work is depicted in fig. 1.

2.1. coating and machining

Thin-film coatings were performed on cutting tool inserts in 
an industrialized coating unit (oerlikon Balzers Ltd., pune, in-
dia). TiAlN and TiAlN/WC-C coatings were synthesized through 

the cathodic arc evaporation technique. sAe 1015 mild steel 
cylindrical bars were used as work material and the machining 
was carried out by using TiAlN/WC-C, TiAlN coated and pure 
carbide tool inserts in joBBer XL CNC turning center. The 
cutting parameters were selected based on literature as shown 
in Table 1. for the prescribed cutting parameters, the L27 or-
thogonal array was selected based on the design of experiments. 
Correspondingly, twenty-seven experiments were conducted 
for selected design. flank wear of tool was measured for each 
run through profile projector. The average of three values was 
recorded in Table 2. for optimizing the output response (tool 
wear), smaller the better criteria were considered [15] . Taguchi’s 
parameter design approach was used to investigate the effect of 
process parameters on flank wear as depicted in Table 2. 

TABLe 1

Cutting parameters 

Workpiece: Mild steel (50 mm diameter, 110 mm length)
Machining time: 10 minutes

Coolant: No coolant, dry cutting environment
parameter/ level 1 2 3

Coating uncoated TiAlN TiAlN/WC-C
Cutting speed (rpm) 500 550 600
feed rate (mm/rev) 0.05 0.1 0.15
Depth of cut (mm) 1 1.5 2

2.2. online tool condition monitoring system

in this research experiments, sound generated during ma-
chining was recorded through a novel sound sensor- Microflown-
pu sensor. 

fig. 2 shows the basic concept of measurement of sound 
pressure. it is suitable to measure particle velocity and sound 

fig. 1. Methodology and TCM frame work
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pressure during machining process and it can differentiate the 
signals of good and faulty tool significantly. Data acquisition 
from sensor was carried out through Ni LabVieW as shown in 
fig. 3. fig. 4 depicts the LabVieW program for data acquisition 
in frequency response. The acquired signals were statistically 
analyzed in terms of kurtosis and i-kaz coefficient. 

Nuwai laid the groundwork for i-kaz method, who studied 
random or non-deterministic signal features. To categorize the 
deterministic features, the rth order of moment Mr is used often. 

The rth order of the moment, Mr for the discrete sign in the fre-
quency band can be expressed as: 

 
 

1

1    
n r

r i
i

M x x
N 

    (1)

where, N – Number of data points, Xi – Data at instantaneous 
points, X– – Mean.

initially, signals are obtained using LAB-View, n number of 
values by a combination of sound pressure and particle velocity 
were gained. The kurtosis K for discrete data can be expressed as :
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where σ – Variance.

TABLe 2

experimental Design

S.no coating
cutting 
speed 
(rpm)

Feed rate 
(mm/rev)

depth  
of

cut (mm)

Flank 
wear 
(mm)

1 uncoated 500 0.05 1 0.025900
2 uncoated 500 0.1 1.5 0.029000
3 uncoated 500 0.15 2 0.033000
4 uncoated 550 0.05 1.5 0.031000
5 uncoated 550 0.1 1 0.026000
6 uncoated 550 0.15 2 0.033241
7 uncoated 600 0.05 2 0.036390
8 uncoated 600 0.1 1 0.020000
9 uncoated 600 0.15 1.5 0.026210
10 TiAlN 500 0.05 2 0.039000
11 TiAlN 550 0.1 1.5 0.027000
12 TiAlN 550 0.15 2 0.028000
13 TiAlN 550 0.05 1 0.025128
14 TiAlN 600 0.1 1 0.022000
15 TiAlN 600 0.15 2 0.030000
16 TiAlN 600 0.05 1.5 0.029000
17 TiAlN 500 0.1 1 0.022325
18 TiAlN 500 0.15 1.5 0.027000
19 TiAlN/WC-C 500 0.05 1.5 0.024750
20 TiAlN/WC-C 500 0.1 1 0.015000
21 TiAlN/WC-C 500 0.15 2 0.021000
22 TiAlN/WC-C 550 0.05 2 0.028000
23 TiAlN/WC-C 550 0.1 1 0.015000
24 TiAlN/WC-C 550 0.15 1.5 0.018000
25 TiAlN/WC-C 600 0.05 1 0.020110
26 TiAlN/WC-C 600 0.1 1.5 0.019000
27 TiAlN/WC-C 600 0.15 2 0.025000

fig. 2. Basic Concept of Measurement

fig. 4. Lab VieW program for Data Acquisition

fig. 3. Microflown Data Acquisition setu
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The i-kaz coefficient calculates the distance of any data 
point from the centroid of signal to determine the degree of 
dispersion in data distribution. The coefficient i-kaz shall be 
as follows: 

 
   1 1 2     I III Kaz DCoef M M

N N
     (3)

where, M I and M II – the moment in the channel i and ii 
By substituting equations 1, 2 in 3, i-kaz coefficient can 

be framed as depicted in equation 4 and it is denoted by the 
symbol Z2

∞.
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where, KI and KII – kurtosis of signal in ch-i and ch-ii; S I and 
SII – standard deviation of signal in ch-i and ch-ii.

2.3. Artificial neural network design

The analysis of tool condition using different types of net-
works and implementation of neural network (NN) in monitoring 
system were studied by several authors. The output and quantity 
of neurons in each hidden layer were affected in terms of NN’s 
uniqueness [16]. seventy percent of samples were used for train-
ing and thirty percent were used for testing and confirmation 
purposes for the remaining samples. The Levenberg-Marquardt 
(TrAiNLM) training algorithm provided the highest perfor-
mance among several training algorithms. The network was 
calibrated to its error value during the training process. 

As the adaption learning feature, LeArNgDM was con-
sidered. The learning factor for LeArNgDM was selected 
as 0.01 and dynamic constant of 0.9 has been used to develop 
network learning process. Another significant part of hidden 
layer transfer function is that it directly influences the results of 
NN. TANsig sigmoid function was used for hidden layer trans-
fer. The validation data were used for assessment and training 
process was completed until generalization ceased to improve. 
The output of mean square error (Mse) was used. A lower Mse 
value indicates better network efficiency. Zero Mse indicates 
that the NN forecast was not defective.

3. results and discussion

3.1. Machining and optimization

Machining experiments were performed based array and 
corresponding flank wear was measured and tabulated as shown 
in Table 2. Minimal tool wear values are preferred and hence, 
smaller the best is considered for this analysis as depicted in 
equation 5 [15]. 

 s/N ratio = –10 Log10 [mean of sum of squares  
 of measured- ideal] (5)

from fig. 5, the optimal condition of cutting parameters 
were identified by selecting the largest s/N ratio. As depicted in 
Table 3, the optimum cutting parameters for dry machining of 
sAe 1015 steel were found as follows: coating – TiAlN/WC-C, 
cutting speed – 600 rpm, feed rate – 0.1 mm/rev, and depth of 
cut – 1 mm. response and ranking of each factor following to 
signal to noise ratio are depicted in Table 4.

fig. 5. s/N plot of input parameters

TABLe 3

optimized parameter

parameter optimized Setting
Cutting speed 600 rpm

feed rate 0.1 mm/rev
Depth of cut 1 mm

Coating TiAlN/WC-C

TABLe 4

signal to Noise ratio- response table 

level coating
cutting  
speed  
(rpm)

Feed rate 
(mm/rev)

depth of cut 
(mm)

1 30.88 31.87 30.97 33.61
2 31.26 32.03 33.48 31.94
3 33.89 32.13 31.58 30.48

Delta 3.00 0.26 2.51 3.13
rank 2 4 3 1

from Table 5, it was determined that the depth of cut effects 
tool wear by 52.15%, followed by coating, which contributes 
by 38.92%. feed rate influences tool wear by 17.76% whereas, 
cutting speed affects tool wear in lesser dimension (0.53%). The 
results are inline with previous studies [17]. The depth of cut 
has a significant effect on flank wear and the flank wear was 
steadily increased with increase in depth of cut. The bilayer 
tool (TiAlN/WC-C) exhibited second uppermost contribution, 
because of the presence of an intermediate layer of carbonitride 
and hard carbon-top layer (WC-C), which increases the tool’s 
wear resistance (TiAlN / WC-C). 
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TABLe 5

Analysis of Variance

Source dF Adj SS Adj MS F-Value p- 
Value

% con-
tribution

regression 5 0.000870 0.000174 61.05 0.000 —
Cutting 
speed 1 0.000005 0.000005 1.67 0.021 0.54

feed rate 1 0.000128 0.000128 44.84 0.000 13.76
Depth of 

cut 1 0.000485 0.000485 170.28 0.000 52.15

Coating 2 0.000362 0.000181 63.55 0.000 38.92
error 21 0.000060 0.000003
Total 26 0.000930

The regression equations for flank wear were as follows

 uC = 0.02376 – 0.000010 Cutting speed – 0.05652  
 feed rate + 0.011014 Depth of cut (6)

 TiAlN = 0.02251 – 0.000010 Cutting speed – 0.05652  
 feed rate + 0.011014 Depth of cut (7)

 TiAlN/WC-C = 0.01544 – 0.000010 Cutting  
 speed – 0.05652 feed rate + 0.011014 Depth of cut (8)

regression equations for the categorical parameters were 
obtained as prescribed in equations 6-8. flank wear was predicted 
using a response optimizer at optimized setting as depicted in 
Table 6. The output response was predicted as 0.0146295 mm. 
The confirmation experiment was performed at an optimized set-
ting and the flank wear was measured as 0.01528 mm, which is 
closer to predicted value. The normal probability plot shows that 
the residues have fallen on inclined line as depicted in fig. 6. re-
siduals were found to be uniformly distributed. residual vs. fitted 
value indicates that residue is not patterned and scattered across 
field. The residual frequency was small and residual was below 
±0.0024. The influence of cutting speed, depth of cut on tool wear 
and feed rate, depth of cut on tool wear are portrayed in fig. 7. 

fig. 6. Normal probability and residual plot

fig. 7. effect of cutting speed, feed rate and depth of cut on tool wear
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TABLe 6
prediction at optimized setting 

Fit Se Fit 95% ci 95% pi

0.0146295 0.0008081 (0.0129490, 
0.0163100)

(0.0107375, 
0.0185214)

it shows that tool wear increases rapidly with an increase 
in depth of cut and holds at nominal value for an increase in 
cutting speed. An increase in depth of cut follows the same 
trend whereas, a lower feed rate produces higher tool wear than 
a higher feed rate.

3.2. design of online tool condition monitoring 

The frequency-domain response was generated through 
a signal analyzer via vibration and sound toolkit of the LabVieW 
platform. The sample responses for sound pressure captured 
during machining were depicted in fig. 8. At every point of 
machining, it obtains signals and stores signals simultaneously 
frame by frames in online mode through the developed LabVieW 
program as shown in fig. 9. 

The measured sound pressure and particle velocity signals 
are processed and amplified. The pile of processed data was sta-

fig. 8. sample generated signals fron uC, TiAlN, TiAlN/WC-C tools

fig. 9. program for kurtosis and i-kAZ Coefficient
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tistically analyzed through the i-kaz coefficient. kurtosis coef-
ficient was calculated using the equation systematically through 
the generated program as depicted in fig. 9. 10,000 iterations 
or cycles are generated for every 10 seconds, for a period of 
10 minutes, 60, 00,000 iterations are recorded. All the iteration 
values are divided into samples and kurtosis values are calculated 
for respective samples. By substituting kurtosis coefficient in 
equation 4, i-kaz coefficient values were determined for every 
experiment. flank wear was measured for every 10,000 cycles. 
from the results of i-kaz statistical analysis method, the relation 
between i-kaz coefficient (Z2

∞ ) with resultant flank wear was 
established. fig. 10 illustrates the variation of flank wear and 
i-kaz for 100000 cycles. flank wear and ikaz coefficient follow 
a reversible trend in such a way that, an increase in flank wear 
leads to a decrease in the i-kaz coefficient. This decline in the 
coefficient of i-kaz Z2

∞  with flank wear is following the trend 
of power-law curve. it can be expressed as 

 Z2
∞  = a(VB)−n (9)

where Z2
∞  is a two-dimensional i-kaz coefficient, a and n are 

constants which depend on cutting parameter, and VB is denoted 
for flank wear.

i-kaz and tool wear correlation graph are plotted for the se-
lective experiments (one set of data for uncoated (exp. no. 7), sin-
gle layer (exp. no. 18), and bi-layer coated inserts (exp. no. 24)). 
The correlation between the i-kaz statistical approach and tool 
wear is shown in fig. 10. it can be concluded that i-kaz and flank 
wear are inversely proportional to each other and follows the 
power-law curve and the results are in line with previous work 
[18,19]. it can be seen that uncoated inserts have a lower i-kaz 
coefficient whereas, TiAlN/WC-C has a higher i-kaz coefficient 
which states that bilayer coated inserts have the lower flank wear 
compared to the uncoated inserts.

3.3. Artificial neural network (Ann)

A four-layer feed-forward neural network with a back-
propagation algorithm has been developed. The network consists 
of four layers with input, hidden, and output layers. in total, 
10, 00,000 i-kaz values are taken for Neural Network data 
processing. out of total values, 7, 00,000 values are used for 
training, and 3, 00,000 values are used for testing. The number 
of learning steps for complete training was set at 1000 based on 
the time to convergence. As the errors are significantly low in 
comparison with one hidden layer, this model has been devel-
oped with two hidden layer network. The input neuron is i-kaz 
coefficients and the output neuron is flank wear. 

The corresponding neural network and custom neural 
network is shown in fig. 11 and 12. The learning of the neural 
network was executed through the feed-forward Levenberg-
Marquardt algorithm process of learning and it was stopped at 
309 iterations. 

The best training performance is shown in fig. 13. The 
Levenberg-Marquardt algorithm performs better than other 

fig. 11. Neural Network

fig. 10. flank wear and i-kAZ Coefficient

algorithm. The best training performance was obtained at 
309 epochs. fig. 14 shows the regression plot generated from 
training the neural network shows the linearity of the given 
data and the respective regression equation is also generated 
(output = 1.4*Target + 0.024). The neural network model de-
veloped has better (almost 0.94933) coefficient values close to 1 
as depicted in fig. 13. 
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fig. 13. Mean square for Training

fig. 14. regression plot

This value showed that the model could effectively 
predict the tool state. ANN was given training up to 1000 
epochs, showing a least Mse value of 3.7603e-5 as shown in 
fig. 11. This portrays that the developed estimator has a minimal  
error.

4. conclusion

Dry machining of sAe 1015 steel was performed by em-
ploying uncoated, TiAlN, TiAlN/WC-C coated inserts. flank 
wear was measured as output response and the input parameters 
have been optimized through the Taguchi design of experiments. 
The depth of cut had a significant effect on flank wear. A novel 
very near field acoustic sensor – Microflown sensor was used to 
acquire sound signals during the machining operation. The raw 
data were processed and analyzed using LabVieW software. 
The relation between flank wear and the statistical data was es-
tablished using kurtosis and i-kaz coefficient. from the results, 
it was observed that flank wear and i-kaz coefficient follow 
the trend of the power-law curve. The artificial Neural network 
model was trained, validated, and tested with the least mean 
square error value of 3.7603e-5. The developed neural network 
can be efficiently employed with minimal error for monitoring 
tool conditions online.

fig. 12. Custom Network
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