Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we the study generalized family of positive linear operators based on two parameters, which are a broad family of many well-known linear positive operators, e.g., Baskakov-Durrmeyer, Baskakov-Szász, Szász-Beta,Lupaş-Beta, Lupaş-Szász, genuine Bernstein-Durrmeyer, and Pǎltǎnea. We first find direct estimates in terms of the second-order modulus of continuity, then we find an estimate of error in the Ditzian-Totik modulus of smoothness. Then we discuss the rate of approximation for functions in the Lipschitz class. Furthermore, we study the pointwise Grüss-Voronovskaja-type result and also establish the Grüss-Voronovskaja-type asymptotic formula in quantitative form.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220182
Opis fizyczny
Bibliogr. 43 poz., tab.
Twórcy
autor
- Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of General Required Courses, Mathematics, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
autor
- Department of Applied Sciences and Humanities, Institute of Engineering and Technology, Dr. A. P. J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226021, Uttar Pradesh, India
autor
- Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Bibliografia
- [1] A. Kajla, Direct estimates of certain Miheşan-Durrmeyer type operators, Adv. Oper. Theory 2 (2017), no. 2, 162–178.
- [2] H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Model. 37 (2003), 1307–1315.
- [3] S. A. Mohiuddine, A. Kajla, and A. Alotaibi, Bézier-summation-integral-type operators that include Pólya-Eggenberger distribution, Mathematics 10 (2022), no. 13, Article 2222.
- [4] N. Ispir, On modified Baskakov operators on weighted spaces, Turk. J. Math. 25 (2001), 355–365.
- [5] V. Gupta, A note on the general family of operators preserving linear functions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 113 (2019), 3717–3725.
- [6] N. Malik, On approximation properties of Gupta-type operators, J. Anal. 28 (2020), 559–571.
- [7] D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai Ser. Math.-Phys 14 (1969), 31–45.
- [8] A. Alotaibi, F. Özger, S. A. Mohiuddine, and M. A. Alghamdi, Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euleras beta function, Adv. Difference Equ. 2021 (2021), Article 13.
- [9] G. V. Milovanovic, M. Mursaleen, and M. Nasiruzzaman, Modified Stancu type Dunkl generalization of Szász-Kantorovich operators, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 112 (2018), no. 1, 135–151.
- [10] S. A. Mohiuddine, N. Ahmad, F. Özger, A. Alotaibi, and B. Hazarika, Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans. Sci. 45 (2021), 593–605.
- [11] S. A. Mohiuddine and F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 14 (2020), Article 70.
- [12] A. Aral, M. Limmam, and F. Ozsarac, Approximation properties of Szász-Mirakyan Kantorovich type operators, Math. Meth. Appl. Sci. 42 (2019), no. 16, 5233–5240.
- [13] D. Bărbosu, On the remainder term of some bivariate approximation formulas based on linear and positive operators, Constr. Math. Anal. 1 (2018), no. 2, 73–87.
- [14] K. Bozkurt, F. Ozsarac, and A. Aral, Bivariate Bernstein polynomials that reproduce exponential functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 70 (2021), no. 1, 541–554.
- [15] Z. Finta, A quantitative variant of Voronovskaja’s theorem for King-type operators, Constr. Math. Anal. 2 (2019), no. 3, 124–129.
- [16] S. G. Gal and I. T. Iancu, Grüss and Grüss-Voronovskaya-type estimates for complex convolution polynomial operators, Constr. Math. Anal. 4 (2021), no. 1, 20–33.
- [17] V. Gupta, A. Aral, and F. Ozsarac, On semi-exponential Gauss-Weierstrass operators, Anal. Math. Phys. 12 (2022), no. 5, 1–16.
- [18] A. Kajla, S. A. Mohiuddine, and A. Alotaibi, Durrmeyer-type generalization of μ-Bernstein operators, Filomat 36 (2022), no. 1, 349–360.
- [19] M. Mursaleen and M. Nasiruzzaman, Approximation of modified Jakimovski-Leviatan-Beta type operators, Constr. Math. Anal. 1 (2018), no. 2, 88–98.
- [20] F. Ozsarac, V. Gupta, and A. Aral, Approximation by some Baskakov-Kantorovich exponential-type operators, Bull. Iran. Math. Soc. 48 (2022), no. 1, 227–241.
- [21] M. Qasim, M. S. Mansoori, A. Khan, Z. Abbas, and M. Mursaleen, Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters, Math. Found. Comput. 5 (2022), no. 3, 187–196.
- [22] F. Wang, D. Yu, and B. Zhang, On approximation of Bernstein-Durrmeyer operators in movable interval, Math. Found. Comp. 5 (2022), no. 4, 331–342.
- [23] G. Grüss, Über das Maximum des absoluten Betrages von (1∕(b−a))∫abζ(x)g(x)dx−(1∕(b−a)2)∫abζ(x)dx∫abg(x)dx, Math. Z. 39 (1935), 215–226.
- [24] D. Andrica and C. Badea, Grüss’s inequality for positive linear functionals, Period. Math. Hung. 19 (1988), 155–167.
- [25] A. M. Acu, H. Gonska, and I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory, Ukr. Math. J. 63 (2011), 843–864.
- [26] T. Acar, A. Aral, and I. Raşa, The new forms of Voronovskaya’s theorem in weighted spaces, Positivity 20 (2016), 25–40.
- [27] P. Gupta and P. N. Agrawal, Quantitative Voronovskaja and Grüss Voronovskaja-type theorems for operators of Kantorovich type involving multiple Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 43 (2019), 1679–1687.
- [28] A. Kajla, S. A. Mohiuddine, and A. Alotaibi, Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution, Math. Meth. Appl. Sci. 44 (2021), 9407–9418.
- [29] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics, vol. 17, Walter de Gruyter, Berlin, Germany, 1994.
- [30] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
- [31] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.
- [32] M. A. Ózarslan and H. Aktuĝlu, Local approximation for certain King type operators, Filomat 27 (2013), no. 1, 173–181.
- [33] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 1, 53–63.
- [34] R. S. Phillips, An inversion formula for Laplace transformation and semi-groups of linear operators, Ann. Math. 59 (1954), 325–356.
- [35] Z. Finta and V. Gupta, Direct and inverse estimates for Phillips type operators, J. Math. Anal. Appl. 303 (2005), no. 2, 627–642.
- [36] Z. Finta, On converse approximation theorems, J. Math. Anal. Appl. 312 (2005), 159–180.
- [37] P. N. Agrawal and A. J. Mohammad, Linear combination of a new sequence of linear positive operators, Revista de la UMA 42 (2001), no. 2, 57–65.
- [38] V. Gupta and M. A. Noor, Convergence of derivatives for certain mixed Szász-Beta operators, J. Math. Anal. Appl. 321 (2006), no. 1, 1–9.
- [39] V. Gupta, T. M. Rassias, and R. Yadav, Approximation by Lupaş-Beta integral operators, Appl. Math. Comput. 236 (2014), no. 1, 19–26.
- [40] N. K. Govil, V. Gupta, and D. Soybaş, Certain new classes of Durrmeyer type operators, Appl. Math. Comput. 225 (2013), 195–203.
- [41] W. Chen, On the modified Durrmeyer-Bernstein operator (handwritten, in Chinese, 3 pages), In: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987.
- [42] T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operator, In: Sendov, Bl (ed.), Constructive Theory of Functions, Varna, 1987, pp. 166–173. Publ. House Bulgar. Acad. Sci, Sofia, 1988.
- [43] R. Pǎltǎnea, Modified Szász-Mirakjan operators of integral form, Carpathian J. Math. 24 (2008), no. 3, 378–385.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32b99dc7-6c9e-4435-8189-cedb06edb997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.