Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Scanning electron microscopy (SEM) is a perfect technique for micro-/nano-object imaging [1] and movement measurement [2, 3] both in high and environmental vacuum conditions and at various temperatures ranging from elevated to low temperatures. In our view, the magnetic field expanding from the pole-piece makes it possible to characterize the behaviour of electromagnetic micro- and nano-electromechanical systems (MEMS/NEMS) in which the deflection of the movable part is controlled by the electromagnetic force. What must be determined, however, is the magnetic field expanding from the e-beam column, which is a function of many factors, like working distance (WD), magnification and position of the device in relation to the e-beam column. There are only a few experimental methods for determination of the magnetic field in a scanning electron microscope. In this paper we present a method of the magnetic field determination under the scanning electron column by application of a silicon cantilever magnetometer. The micro-cantilever magnetometer is a silicon micro-fabricated MEMS electromagnetic device integrating a current loop of lithographically defined dimensions. Its stiffness can be calibrated with a precision of 5% by the method described by Majstrzyk et al. [4]. The deflection of the magnetometer cantilever is measured with a scanning electron microscope and thus, through knowing the bias current, it is possible to determine the magnetic field generated by the e-beam column in a defined position and at a defined magnification.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
141--149
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, 27100 Pavia, Italy
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
- Łukasiewicz Research Network – Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
- Central Office of Measures, Elektoralna 2, 00-139 Warsaw, Poland
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
autor
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, 27100 Pavia, Italy
autor
- Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11-17, 50-372 Wrocław, Poland
Bibliografia
- [1] Von Ardenne, M. (1937). Improvements in electron microscopes. British patent, 511204.
- [2] Schröter, M.A., Holschneider, M., Sturm, H. (2012). Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy. Nanotechnology, 23(43), 435501.
- [3] Gilles, J.P., Megherbi, S., Raynaud, G., Parrain, F., Mathias, H., Bosseboeuf, A. (2007). Scanning Electron Microscopy for Vacuum Quality Factor Measurement of Small-Size Mechanical Resonators. TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, 2501-2504.
- [4] Majstrzyk, W., Mognaschi, M.E., Orłowska, K., Di Barba, P., Sierakowski, A., Dobrowolski, R., Grabiec, P., Gotszalk, T. (2018). Electromagnetic cantilever reference for the calibration of optical nanodisplacement systems. Sensor. Actuat. A: Phys., 282, 149-156.
- [5] Gotszalk, T. (2020). From MEMS to NEMS. In MEMS: Field Models and Optimal Design, 115-141. Cham: Springer.
- [6] Echlin, P. (1978). Low temperature scanning electron microscopy: a review. J. Microsc., 112(1), 47-61.
- [7] Danilatos, G.D. (1988). Foundations of environmental scanning electron microscopy. Advances in electronics and electron physics, 71, 109-250.
- [8] Kumagai, K., Sekiguchi, T. (2009). Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens. Ultramicroscopy, 109(4), 368-372.
- [9] Pluska, M., Oskwarek, L., Rak, R.J., Czerwinski, A. (2009). Measurement of Magnetic Field Distorting the Electron Beam Direction in Scanning Electron Microscope. IEEE T Instrum Meas. ISSN, 58(1), 173.
- [10] Utke, I., Hoffmann, P., Berger, R., Scandella, L. (2002). High-resolution magnetic Co supertips grown by a focused electron beam. Appl. Phys. Lett., 80(25), 4792-4794.
- [11] Tosolini, G., Michalik, J.M., Córdoba, R., De Teresa, J.M., Pérez-Murano, F., Bausells, J. (2014). Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry. Nanofabrication, 1(1).
- [12] Nieradka, K., Kopiec, D., Małozięć, G., Kowalska, Z., Grabiec, P., Janus, P., Sierakowski, A., Domański, K., Gotszalk, T. (2012). Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectron. Eng., 98, 676-679.
- [13] You, Z. (2017). Space Microsystems and Micro/Nano Satellites. Oksford: Butterworth-Heinemann.
- [14] Stipe, B.C., Mamin, H.J., Stowe, T.D., Kenny, T.W., Rugar, D. (2001). Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Let., 87(9), 096801.
- [15] Xu, F., Guo, S., Yu, Y., Wang, N., Zou, L., Wang, B., Li, R.W., Xue, F. (2019). Method for Assembling Nanosamples and a Cantilever for Dynamic Cantilever Magnetometry. Physical Review Applied, 11(5), 054007.
- [16] Weber, D.P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Morral, A.F., Grundler, D., Poggio, M. (2012). Cantilever magnetometry of individual Ni nanotubes. Nano Lett.12(12), 6139-6144.
- [17] Brugger, J., Despont, M., Rossel, C., Rothuizen, H., Vettiger, P., Willemin, M. (1999). Microfabricated ultrasensitive piezoresistive cantilevers for torque magnetometry. Sensor. Actuat. A: Phys., 73(3), 235-242.
- [18] Jang, J., Budakian, R., Maeno, Y. (2011). Phase-locked cantilever magnetometry. Appl. Phys. Lett., 98(13), 132510.
- [19] Dabsch, A., Rosenberg, C., Stifter, M., Keplinger, F. (2017). MEMS cantilever based magnetic field gradient sensor. J. Micromech. Microengg., 27(5), 055014.
- [20] Herrera-May, A.L., López-Huerta, F., Aguilera-Cortés, L.A. (2017). MEMS Lorentz Force Magnetometers. High Sensitivity Magnetometers, 253-277.
- [21] Park, B., Li, M., Liyanage, S., Shafai, C. (2016). Lorentz force based resonant MEMS magnetic-field sensor with optical readout. Sensor. Actuat. A: Phys., 241, 12-18.
- [22] Wu, L., Tian, Z., Ren, D., You, Z. (2018). A Miniature Resonant and Torsional Magnetometer Based on Lorentz Force. Micromachines-Basel, 9(12), 666.
- [23] Zhou, W., Apkarian, R., Wang, Z.L., Joy, D. (2006). Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology, 1-40.
- [24] Orłowska, K., Majstrzyk, W., Kunicki, P., Sierakowski, A., Pruchnik, B., Tomaszewski, D., Prokaryn P., Grabiec, P., Gotszalk, T. (2018). New design of the cantilevers for radiation pressure investigations. Microelectron. Eng., 201, 10-15.
- [25] Piasecki, T., Guła, G., Waszczuk, K., Drulis-Kawa, Z., Gotszalk, T. (2015). Quartz tuning fork as in situ sensor of bacterial biofilm. Sensor. Actuator. B: Chem., 210, 825-829.
Uwagi
EN
1. The examinations presented here were financed by the National Science Centre (NCN) Preludium Grant “Mechanical impedance measurements of MEMS structures with the use of the photon force reference, PF-MEMS” (Grant No. 2017/25/N/ST7/02780) and Etiuda Grant “Metrologia oddziaływań optomechanicznych z układami mikroelektromechanicznymi MEMS” (Grant No. 2018/28/T/ST7/00302).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32b990b0-b54b-4e37-b055-042808fb16db