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EQUATIONS FOR DETERMINED CONTROL VECTORS 
 
 

Despite intensive development of numerical methods of resolution of ordinary differ-
ential equations, we still seek analytical solutions of these equations in the algebraic form. 
The analytical solution in an algebraic form, is very convenient in case of investigation of 
the course of solution in a large interval of changes of parameters, it also gives more qual-
itative informations. This concerns first of all linear equations which are the most often 
met models of physical objects. Important advantage of these solutions is also their open 
form regarding established state of the system. The paper proves existence of algebraic 
forms of solutions of control vectors with components: exponential, sinusoidal with dif-
ferent circular frequencies and sinusoidal multiple. Also solutions for other kind of control 
vectors which are mentioned in the literature are presented. 
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1. INTRODUCTION 
 
 In spite of considerable progress in the field of numerical methods of resolve 
differential equations, analytical methods are still developed and are essential in 
such fields as circuit theory, control theory or theoretical mechanics. 
 A large part of the basic theory of physical systems is based on foundation that 
such systems can be adequately described by means of linear differential equa-
tions with constant coefficients [1, 3, 4, 8]. This foundation is propper for many 
systems and leads usually to concepts and evaluations which at least qualitatively 
refer to the original, not reduced task. Major part of electrical circuit theories is 
based on this foundation. 
 Analytical methods give solutions in algebraic form without necessity of sub-
stitution numerical values of parameters in the course of calculations. Such solu-
tion makes possible to introduce numerical values and easily examine the effect 
of the change of value for some values. Consequently it is obvious that far more 
information about the system and in significantly shorter time can be obtained in 
case of analytical solution. Therefore the affords to obtain analytical solution are 
fully justified. 
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 Also for non-linear systems are developed methods of findings analytical so-
lutions of equations describing these systems. Tools applied to this are theory-
based methods of Lie groups transformation [2, 7]. This leads in many cases to  
a global decoupling and linearization of equations describing these systems. 
 The paper shows existence of algebraic forms of solutions for linear state equa-
tion for three control vectors with components: exponential, sinusoidal with dif-
ferent amplitudes, circular frequencies and phases, and also for sinusoidal multi-
ple control for which every component of the control vector has sinusoidal com-
ponents with different amplitudes, circular frequencies and phases. It presents also 
appearing in literature analytical solutions for control vectors with other compo-
nents e.g. [1, 4, 6, 8]. The advantage of the algebraic forms is the open form of 
solution concerning the steady state of the system, what practically is not possible 
to obtain by the use of numerical methods, as well as the minimization of calcu-
lating errors. 
 

2. ALGEBRAIC FORMS OF SOLUTIONS 
FOR DETERMINED CONTROL VECTORS 

 
 Solution of the linear state equation in the normal form [1, 4, 8]: 
      ( ) ( ) ( ) ( ) ( )t t t t t= +x A x B u ,   0 0( )t =x x  (1) 

for the control vector applied in the moment 0t t=  can be presented in a form of 
sum of solutions of the homogeneous equation (normal solution) ( )s tx  independ-
ent from the extortion and solution coming from control vector (forced solution) 

( )w tx , i.e.: 
  ( ) ( ) ( )wst t t= +x x x  (2) 
where normal solution is determined as: 
 ( )0

0( ) e t t
s t −= Ax x  (3) 

and forced solution has a form: 

  

(
 

0

)( ) e ( )t
t

t
w t dτ τ τ−=  Ax Bu  (4) 

Therefore it is essential to find analytical form of the forced component of solution 
of the equation state. Below we present the forced solutions for three kinds of 
control vector: exponential, sinusoidal with components having different ampli-
tudes, circular frequencies and phases, and for sinusoidal of multiple for which 
every vector component of the control has sinusoidal components witht different 
amplitude, circular frequency and phase. 
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2.1. Exponential control 
 
 Vector of exponential control can be presented in the form: 
          

T1 2
1( ) [ e e e ] eb tb t b t p

i p
tt a a a= =  bu a  (5) 

where a  and b  are p -dimensional vectors with real components p∈ℜa , p∈ℜb
, in the form: 
 1[ , , , , ]i pdiag a a a=  a ,   1[ , , , , ]i pdiag b b b=  b  (6) 
 For the purpes of designation of the integral of solution of the state equation 
the control vector is recorded in form: 

  

1
( ) ( )i i

p

i
t u t

=
=u n  (7) 

whereat  in  is an singular vector having i -th components equal one, and the re-
maining equal zero, and ( )iu t  is an expression 
   ( ) eb ti

i iu t a=  (8) 
where ia , ib  are i -th components of vectors a , b . After substitution (5) and (6) 
to the general integral of solution we receive: 

                  

0 01 1
e e ( ) e e ( )t t

i i i i

t tp p

i it t
u d u dτ ττ ττ τ− −

= =

  = 
 
  A A A AB n B n  (9) 

 Easily we can prove equality: 

          

1 1
( ) ( )i i i i

p p

i i
u uτ τ

= =
= B n B  (10) 

where: 
  1[ | | | | ]i p=  B B B B  (11) 
Consequently expression (9) can be presented for i -th component in the form: 

           

0 01
e e ( ) e e ( )t t

i i i

t tp

it t
u d u dτ ττ ττ τ− −

=

 
=   

 
 A A A AB B  (12) 

 As first we have to designate the integral in expression (12). Integrating by 
parts we receive: 

    

               

1 1

0 0 0

e ( ) e e e e e eb b bi i i
i i i i i i

t t t

t t t
u d a d a b b a dτ τ τ τ τ τ ττ τ ττ− − − − − −= = +  A A A AA  (13) 

 Multiplying both sides (13) by ib  and subtracting both integrals from each 
other in this expression we obtain: 
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0

[ ] e e e eb bi i
i i i

t

t
b a d aτ τ τ ττ− −− = − A AA I  (14) 

and consequently: 

   

          

1
 

0
0

e e [ ] e e  b bi i
i i i

t
t
t

t
a d a bτ τ τ ττ− − −= − − A AA I  (15) 

 By putting the integral (15) to the expression (12), after executing the operation 
we receive: 

 

        

01
 

01 1
e e ( ) e [ ] e et t bi

i i i i i

tp p t
t

i it
u d a bτ τ τττ− − −

= =

 
= − =  

 
 A A A AB BA I  

   1 0 0
 

1
e [ ] (e e e e )t t b t t b ti i

i i i

p

i
a b − − −

=
= − −A A A BA I  (16) 

We can easily show the commutativity of the matrix [5]: 

 1 1e [ ] [ ] ei ib bτ τ− − −− = −A AA I A I  (17) 
therefore: 

   

    

1 ( )0 0
 

01 1
e e ( ) [ ] (e e e )t t t b t b ti i

i i i i i

tp p

i it
u d a bτ ττ− − −

= =

 
= − −  

 
 A A AB I BA I  (18) 

Finally the forced component is in a form: 

   ( ) 1 10 0
     

1 1
( ) e [ ] e [ ] et t b t b ti i

w i i i i i i i

p p

i i
t a b a b a− − −

= =
= − − − A B Bx A I A I  (19) 

 The only condition of existence of the algebraic form of solution is, such that 
the matrix  

1[ ]ib −−A I  is nonsingular for each i -th component of control vector. 
This matrix will be always singular in case, when i -th exponent of the exponential 
control will be equal any value from among the eigenvalue of state matrices A . 
Because p∈ℜb , therefore this concerns only real eigenvalues. 
 For the exponential excitation (5) the vector of forced solution can be presented 
in the form: 

 
1

( ) ( )i
w w

p

i
t t

=
=x x  (20) 

where i -th forced component has a form: 
   1 ( )0 0

 ( ) [ ] (e e e )i t t b t b ti i
w i i it a b − −= − −A I Bx A I  (21) 

 When 1det[ ] 0ib −− =A I , this expression this can be presented in the form: 

     
  

    

( )0 0
adj [ ] (e e e )det [ ]

t t b t b ti i i
i

i

b
b

−− −−
A I BA I

A I  (22) 



 Algebraic forms of solutions of linear state equations ... 79 
 

 

The expression in brackets can be transformed as follows: 
    

  

( ) ( ) ( )0 0 0 0e e e (e e )et t b t b t t t b t t b ti i i i− − − −− = − =A AI I  
    

           

( ) ( ) [ ]( )0 0 0
 (e e ) e (e ) et t b t t b t b t t b ti i i i− − − − −= − = −A I A II I  (23) 

 Let us consider the expression: 
     

[ ]( )0adj [ ](e )b t ti
ib − −− − IA IA I  (24) 

Since the exponential function of the matrix can be presented in the form: 

  

1

1e !
t k k

k
tk

∞

=
= +G I G  (25) 

we obtain: 

      0
1

1adj [ ] [ ] ( )!
k k

i i
k

b b t tk
∞

=
− − − =A I A I F  (26) 

Let us accept the mark: 
 [ ]ib= −G A I  (27) 
since: 
 [adj ] det=G G I G  (28) 
therefore: 

            

      

1 1
 0 0

1 1

1 1  [adj ] ( ) det ( )! !
k k k k

k k
t t t tk k

− −
∞ ∞

= =
= − = − F G GG G G  (29) 

It results so that because    det 0
bi

=G , therefore it is necessary (at the same deter-

minant in the nominative) to differentiate the numerator and the nominative  r -
tuplely, where r  is a multiplicity of the eigenvalue adequate to the exponent of i
-th component of the control vector. Because in such case, for i ibλ = , it 

   det [ ]ib−A I  is equal to the characteristic polynomial of the matrix A : 

    

1
det [ ] ( ) ( 1)n i

n i

n

i
w aλ λ λ−

=
− = = − A I  (30) 

this r -th derivative of the polynomial ( )w λ  in the point i ibλ =   can record as: 

  

0

( )!( ) ( 1) !
r

n k
r n r k

i

n r

b k

r kd w akd λ
λ λλ − −

−

= =

+= −   (31) 

Differentiation of the numerator r -tuplely on the basis of formula of the multiple 
differentiation of the product of two functions gives the following result: 

  0
 0

0

!e ( 1) ( )( )! !
k

b t n r ki
k i

n r

k

r dt br k k dλ
−

−

=
− − G  (32) 

 Finally, after execution of operation we receive a formula on i -th component 
of state vector: 
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( )0 0

 0

 
0

e e( )  adj[ ]
( )

t t b t kii r k
kw i ir

i
r

i

r

bk
b

r dt a t
dd kwd

λ

λ

λλλλ

−
−

==

=

 = − − 
 


A

x A I B  

      

 
0

 adj[ ]
( )

k
r k

ki ir
i

r

i

i r

bk
b

b t re da t
dd kwd

λ

λ

λλλλ

−

==

=

 − − 
 

 A I B  (33) 

 
2.2. Sinusoidal control with different 

 Circular frequencies 
 
 The sinusoidal control vector can be presented in the form: 

  

    

   

   

1 1 1

  

sin( )
             

sin( )( ) ( )
             

sin( )

m

i m i i m

p m p p

U t

U tt t

U t

ω ψ

ω ψ ω ψ

ω ψ

± 
 
 
 ±= = +
 
 
 ± 





u U sin  (34) 

where: 1, ,i p=  , 
          

 1diag [ , , , , ]m m i m p mU U U=  U  and: 
T T

 1 1[ ( )] [sin( ), ,sin( ), ,sin( )]i i p pt t t tω ψ ω ψ ω ψ ω ψ± = ± ± ± sin  
 To designate the general integral of solution of the state equation with the con-
trol vector (34) we can use the dependence (7), where: 
  ( ) sin( )i i m i iu t U tω ψ= ±  (35) 
On this base and with the use (10) we can record the expression: 

             

0 01
e e ( ) e e ( )t t

i i

t tp

it t
d u dτ ττ ττ τ− −

=

 
=   

 
 A A A AB u B  (36) 

 At first we designate the integral from the expression (36) in a form: 
      e ( ) e sin( )i i m i iu d U dτ τ ω ψττ τ τ− −= ± A A  (37) 

Integrating twice by parts the right side (37), and then multiplying both sides of 
the obtained result by 2 iω−  and subtracting from each other both integrals in this 
expression we receive: 

 

2 2
  [ ] e sin( )i i m i iU dτω ω ψτ τ−+ ± = AI A  

           cos( ) e  sin( ) ei i m i i i m i iU Uτ τω ω ψ ω ψτ τ− −= − ± − ±A AA  

Finally: 
  e sin( )i m i iU dτ ω ψτ τ− ± = A  
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2 2 1
  cos( )[ ] ei i m i i iU τω ω ψ ωτ − −= − ± + −AI A  

  

2 2 1
   sin( )[ ] ei m i i iU τω ψ ωτ − −− ± + AI A A  (38) 

Taking into account (38) in (37) we obtain for i -th component: 

    

0

e e ( )t
i i

t

t
u dτ τ τ−

 
=  

 
A BA  

 

2 2 1
  cos( ) e [ ] et t

i i m i i i iUω ω ψ ωτ − −= − ± + −A AI A B  

    

2 2 1
  sin( ) e [ ] et t

i m i i i iU ω ψ ωτ − −− ± + +A AI A A B  

 

2 2 1 0
  cos( ) e [ ] et t

i i m i i i iUω ω ψ ωτ −+ ± + +A AI A B  

   

2 2 1 0
  sin( ) e [ ] et t

i m i i i iU ω ψ ωτ − −+ ± +A AI A A B  

We can easily show the commutativity of the product of the matrix: 

0t t=  
now then: 

   

0

e e ( )t
i i

t

t
u dτ τ τ−

 
=  

 
A BA  

          

( ) 2 2 10
 0  0e [ ] [ sin( ) cos( )]t t

i i i m i i i i i m i iU t U tω ω ψ ω ω ψ− −= + ± + ± −A I A AB B  

          

2 2 1
  [ ] [ sin( ) cos( )]i i i m i i i i i m i iU t U tω ω ψ ω ω ψ−− + ± + ±I A AB B  

Finally: 

     
0

0 0SP SS SC
1 1

( )( ) e [ sin( ) cos( )]i i i
w i i i i

p p

i i

t tt t tω ψ ω ψ
= =

−= − ± + ± Ax V V V  (39) 

where: 
  0 0SP SS SCsin( ) cos( )i i i

i i i it tω ψ ω ψ= ± + ±V V V  

  

2 2 1
  SS [ ]i

i m i iU ω −= +V I A AB  

    

2 2 1
  SC [ ]i

i i m i iUω ω −= +V I A B  
 

2.3. Sinusoidal multiple control 
 
 The multiple sinusoidal control vector can be presented in the form: 



82  Ryszard Porada, Norbert Mielczarek 
 

 

 

  

 
   

  

  

  

1

1  1 1

 

 

0

0 0 0

0

sin( )

sin( )( ) ( ) ( )

sin( )

j j j
m

i
j j j j j j j

i m i i

p
j j j

p m p p

M

j

M M M

j j j

M

j

U t

U tt t t

U t

ω ψ

ω ψ ω ψ

ω ψ

• • •

• • •

=

= = =

=

 
± 

 
 
 
 ±= = = ± 
 
 
 
 ± 
 



  



u u U sin  (40) 

where 1max{ , , , , }i pM M M M=   , and 
      

 1    diag [ , , , , ]j j j j
m i m p mU U U=  U , 

T T
1 1[ ( )] [sin( ), ,sin( )]j j j j j j

p pt t tω ψ ω ψ ω ψ± = ± ±sin , 1, ,i p=  , 1, ,j M=  ,  
 1[ | | | | ]i p=  B B B B . 

 On the basis (7) for purpose of designating the general integral of solution at 
the control vector (40) let us record j -th component of this vector in the form: 

    

1
( ) ( )j j

i i

p

i
t u t

=
= u n  (41) 

whereat: 
 

  
( ) sin( )j j j j

i i m i iu t U tω ψ= ±  (42) 

After the substitution (40), (41) and (42) to the generalized formula we receive: 

     

0 0 0
e e ( ) e e ( )t t j

t t

jt t

M
d dτ ττ τ τ τ− −

=

 
= = 

 
 A AB u B uA A  

          

0 0 10 0
e e ( ) e e ( )t j t j

i i

t t p

it t

M M

j j
d u dτ ττ τ τ τ− −

== =

   
= = =      

   
   A AB u B nA A  

           

0 01 1 00
e e ( ) e e ( )t j t j

i i i i

t tp p M

i i jt t

M

j
u d u dτ ττ τ τ τ− −

= = ==

       = =             
    A AB BA A  (43) 

To calculate  the integral from the expression (44) we can use the relation (42), 
therefore: 

  e sin( )j j j
i m i iU dτ ω τ ψ τ− ± = A  

b  
    

2 2 1
   sin( )[ ( ) ] ej j j j

i m i i iU τω ψ ωτ − −− ± + AI A A  (44) 
Putting this expression to (43) we receive: 
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01 0
e e ( )t j

i i

tp M

i j t
u dτ τ τ−

= =

  
  =     

  A A B  

(    
.

2 2 1
   

1 0
e  sin( )e [ ( ) ] et j j j j t j t

i i m i i i i

p M

i j
U tω ω ψ ω − −

= =
= − ± + −A A AI A A B  

a  
   

2 2 1 0
    sin( ) e [ ( ) ] ej j j t j t

i m i i i iU tω ψ ω − −+ ± + +AA I A A B  

)   

2 2 1 0
    cos( ) e [ ( ) ] ej j j j t j t

i i m i i i iUω ω ψ ωτ − −+ ± + AA I A B  

Finally: 

   
0

   
1 0 1 0

( )( ) e [ sin( ) cos( )]j j j j j j j
w i i i i i i iSP SS SC

p pM M

i j i j

t tt t tω ψ ω ψ
= = = =

−= − ± + ± Ax V V V  (45) 

where: 
  0  0sin( ) cos( )j j j j j j j

i i i i i i iSP SS SCt tω ψ ω ψ= ± + ±V V V  

  

2 2 1
    [ ( ) ]j j j

i i m i iSS U ω −= +V I A AB  

 

2 2 1
    [ ( ) ]j j j j

i i i m i iSC Uω ω −= +V I A B  
 

3. OTHER ALGEBRAIC FORMS FOR DETERMINED 
CONTROL VECTORS 

 
 In literature we can find also other algebraic forms for some, typical for appli-
cation control vectors. They appear dispersed in literature therefore it seems useful 
to collect them for possible applications in one elaboration. 
 
● Control vector with impulse components [1, 8] 
 For the control vector in the form: 
    ( ) ( )t tδ=u w  (46) 
where w  is p -dimensional vector ( p∈ℜw ) with components representing val-
ues (fields) of p  impulse functions applied in the moment 0 0t t= = , the forced 
solution has a form: 
    ( )  ew

tt = Ax B w  (47) 
 
● Control vector with constant components [1, 8] 
 For the control vector in ta form: 
  ( )t =u a  (48) 
where a  is p -with the dimensional vector ( p∈ℜa ) with constant components, 
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applied in moment 0t t= , the forced solution has a form: 
          

1 10( )( ) ew
t tt − −−= −Ax A B a A B a  (49) 

 
● Control vector with linear components [1, 8] 
 For a control vector in the form: 
      ( )t t=u a  (50) 
where a  is p -with the dimensional vector ( p∈ℜa ) with linear components, ap-
plied in the moment 0t t= , the forced solution is in form: 

                

2 1 2 10
0

( )( ) e [ ]w
t tt t t− − − −−= + − −Ax A B a A B a A B a A B a  (51) 

 
● Control vector with multinomial components [6] 
 For control vector in the form: 

     1   

T

0 0 0 0
( ) j j j j j j j j

i p

N N N N

j j j j
t a t a t a t t

= = = =

 
= = 
 
    u a  (52) 

where ja  is p -dimensional vector ( j p∈ℜa ) with linear components, applied in 
the moment 0t t= , forced solution has a form: 

      0( )

0 0
( ) e     j k j k

w WP WW

N N N Nt t

j jk j k j
t −

= == =
= −   Ax V V  (53) 

where: 
  

     

( 1)
0

!
!

j k k j k j
WP

k tj
− − +=V A B a  

  

      

( 1)!
!

j k k j k j
WW

k tj
− − +=V A B a  

 
● Control vector with sinusoidal components with constant 
 circular frequencies [6] 
 For control vector in the form: 

  

  

    

  

1 1

  

 

sin( )

sin( )( ) ( )

sin( )

m

i m i

p m p

U t

U tt t

U t

ω ψ

ω ψ ω ψ

ω ψ

± 
 
 
 ±= = +
 
 
 ± 




u U sin  (54) 

where 1, ,i p=   and: 
   1   diag [ , , , , ]m i m p mU U U=  U  (55) 
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  T T
    1[ ( )] [sin( ), ,sin( ), ,sin( )]i pt t t tω ψ ω ψ ω ψ ω ψ± = ± ± ± sin  (56) 

applied in the moment 0t t= , forced solution has a form: 
    

0   SP SS SC
( )( ) e ( ) ( )w
t tt t tω ψ ω ψ−= − + − +Ax V M sin M cos  (57) 

where: 
T T

    1[ ( )] [cos( ), ,cos( ), ,cos( )]i pt t t tω ψ ω ψ ω ψ ω ψ± = ± ± ± cos  
  0 0  SP SS SC( ) ( )t tω ψ ω ψ= + + +V M sin M cos  

    

2 2 1
SS [ ]ω −= +M I A AB U  

         

2 2 1
SC [ ]ω ω −= +M I A B U  

 
● Control vector with harmonics components [6] 
 For a control vector in the form: 

  

  

  

  

  

  

1
1  1

1 1
  

1
 

0

0 0 0

0

sin( )

sin( )( ) ( ) ( )

sin( )

h h
m

h h h h h
i m i

h h
p m p

h

h h h

h

U h t

U h tt t h t

U h t

ω ψ

ω ψ ω ψ

ω ψ

• • •

• • •

∞

∞ ∞ ∞

∞

=

= = =

=

 ± 
 
 
 
 ±= = = ±
 
 
 
 

± 
 



  



u u U sin  (58) 

where: 1, ,i p=  , 1ω  – the circular frequency of basic of harmonic and: 
  

      
 1    diag[ , , , , ]h h h h

m i m p mU U U=  U  (59) 
    1 T 1 1 1

1[ ( )] [sin( ), ,sin( ), ,sin( )]h h h h
i ph t h t h t h tω ψ ω ψ ω ψ ω ψ± = ± ± ± sin   (60) 

applied in the moment 0t t= , the forced solution is in form: 

   

1 10
0 0SP SS SC

0 0

( )( ) e [ ( ) ( )]h h h h h
w

h h

t tt h t h tω ψ ω ψ
∞ ∞

= =

−= − ± + ± Ax V M sin M cos  (61) 

where: 
1 1

  0 0SP SS SC( ) ( )h h h h hh t h tω ψ ω ψ= ± + ±V M sin M cos  

    

1 2 2 1
 SS [ ( ) ]h hhω −= +M I A AB U  

    

1 1 2 2 1
 SC [ ( ) ]h hh hω ω −= +M I A B U  

 
4. CONCLUSION 

 
 In the work were presented forced components of analytical solutions of the 
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state equation in a normal form for three kinds of control vector: exponential, si-
nusoidal with components having different amplitudes, circular frequencies and 
phases, and also for a sinusoidal multiple control for which each component of 
the control vector has sinusoidal components with different amplitudes, circular 
frequencies and phases. These solutions enable full qualitative and quantitative 
analysis how the individual values influence properties and shape of the obtained 
solutions. The work presents also other known from the literature [1, 4, 6, 8] al-
gebraic forms of solutions of state equations. They can be useful in circuits theory, 
control theories and other fields in which mathematical models of systems are 
described by the use of linear state equation in a normal form. 
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