Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we present a new optimization method based on a new class of functions, namely generalized polynomials (GPs) for solving linear and nonlinear fractional differential equations (FDEs). In the proposed method, the solution of the problem under study is expanded in terms of the GPs with fixed coefficients, free coefficients and control parameters. The initial conditions are employed to compute the fixed coefficients. The residual function and its ǁ.ǁ2 are employed for converting the problem under consideration to an optimization one and then choosing the unknown free coefficients and control parameters optimally. As a useful result, the necessary conditions of optimality are derived as a system of nonlinear algebraic equations with unknown free coefficients and control parameters. The validity and accuracy of the approach are illustrated by some numerical examples. The obtained results show that the proposed method is very efficient and accurate.
Wydawca
Czasopismo
Rocznik
Tom
Strony
443--457
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, Shahrekord University, Shahrekord, Iran
autor
- Department of Mathematics, Shahrekord University, Shahrekord, Iran
autor
- Department of Mathematics, Fasa University, Fasa, Iran
autor
- Department of Mathematics, Shahrekord University, Shahrekord, Iran
Bibliografia
- [1] Atangana A. Convergence and stability analysis of a novel iteration method for fractional biological population equation. Neural Comput Appl. 2014; 25: 1021-1030. doi: 10.1007/s00521-014-1586-0.
- [2] Atangana A, Baleanu D. Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus. Int J Nonlin Mech. 2014; 67: 278-284. URL http://dx.doi.org/10.1016/j.ijnonlinmec.2014.09.010.
- [3] Duarte FBM, Machado JAT. Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 2002; 29: 342-362. doi: 10.1023/A:1016559314798.
- [4] Agrawal OP. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 2004; 38: 323-337. doi: 10.1007/s11071-004-3764-6.
- [5] Engheta N. On fractional calculus and fractional multipoles in electromagnetism. IEEE T Antenn Propag. 1996; 44: 554-566. doi: 10.1109/8.489308.
- [6] Magin RL. Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl. 2010; 59: 1586-1593. doi: 10.1016/j.camwa.2009.08.039.
- [7] Kulish VV, Lage JL. Application of fractional calculus to fluid mechanics. J Fluids Eng. 2002; 124: 803-806.
- [8] Oldham KB. Fractional differential equations in electrochemistry. Adv Eng Soft. 2010; 41: 9-12. doi: 10.1016/j.advengsoft.2008.12.012.
- [9] Gafiychuk V, Datsko B, Meleshko V. Mathematical modeling of time fractional reaction diffusion systems. J Comput Appl Math. 2008; 220: 215-225. doi: 10.1016/j.cam.2007.08.011.
- [10] Lederman C, Roquejoffre JM, Wolanski N. Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames. Ann di Mate. 2004; 183 (2): 173-239. doi: 10.1007/s10231-003-0085-1.
- [11] Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer-Verlag; 1997. ISBN: 978-3-211-82913-4, 978-3-7091-2664-6.
- [12] Meral FC, Royston TJ, Magin R. Fractional calculus in viscoelasticity: an experimental study. Commun Nonl Sci Num Sim. 2010; 15 (4): 939-945. doi: 10.1016/j.cnsns.2009.05.004.
- [13] Machado JT, Kiryakov V, Mainardi F. Recent history of fractional calculus. Commun Nonl Sci Num Sim. 2011; 16 (3): 1140-1153. doi: 10.1016/j.cnsns.2010.05.027.
- [14] Elsayed A, Gaber M. The Adomian decomposition method for solving partial differential equations of fractional order in finite domains. Phys Lett A. 2006; 359 (3): 175-182. doi: 10.1016/j.physleta.2006.06.024.
- [15] Odibat Z, Momani S, Xu H. A reliable algorithm of Homotopy analysis method for solving nonlinear fractional differential equations. Appl Math Model. 2010; 34 (3): 593-600. URL http://dx.doi.org/10.1016/j.apm.2009.06.025.
- [16] Rehman MU, Khan RA. The Legendre wavelet method for solving fractional differential equations. Commun Nonl Sci Num Sim. 2011; 16 (11): 4163-4173. doi: 10.1016/j.cnsns.2011.01.014.
- [17] Heydari MH, Hooshmandasl MR, Ghaini FMM, Fereidouni F. Two-dimensional Legendre wavelets for-solving fractional poisson equation with dirichlet boundary conditions. Engineering Analysis with Boundary Elements. 2013; 37 (11): 1331-1338. doi: 10.1016/j.enganabound.2013.07.002.
- [18] Heydari MH, Hooshmandasl MR, Mohammadi F. Legendre wavelets method for solving fractional partial differential equations with dirichlet boundary conditions. Appl Math Comput. 2014; 234 (C): 267-276. doi: 10.1016/j.amc.2014.02.047.
- [19] Heydari MH, Hooshmandasl MR, Mohammadi F. Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Advances in Applied Mathematics and Mechanics. 2014; 6 (2): 247-260. doi: 10.4208/aamm.12-m12132.
- [20] Heydari MH, Hooshmandasl MR, Ghaini FMM, Cattani C. Wavelets method for the time fractional diffusion-wave equation. Phys Lett A. 2015; 379 (3): 71-76. URL http://dx.doi.org/10.1016/j.physleta.2014.11.012.
- [21] Heydari MH, Hooshmandasl MR, Mohammadi F, Cattani C. Wavelets method for solving systems of nonlinear singular fractional volterra integro-differential equations. Commun Nonlinear Sci Numer Simulat. 2014; 19 (1): 37-48. doi: 10.1016/j.cnsns.2013.04.026.
- [22] Lakestani M, Dehghan M, Irandoust-Pakchin S. The construction of operational matrix of fractional derivatives using B-spline functions. Nonlinear Sci Numer Simul. 2012; 17 (3): 1149-1162. doi: 10.1016/j.cnsns.2011.07.018.
- [23] Garrappa R, Popolizio M. On accurate product integration rules for linear fractional differential equations. J Comput Appl Math. 2011; 235 (5): 1085-1097. URL http://dx.doi.org/10.1016/j.cam.2010.07.008.
- [24] Galeone L, Garrappa R. On multistep methods for differential equations of fractional order. Mediterr J Math. 2006; 3 (3): 565-580. doi: 10.1007/s00009-006-0097-3.
- [25] Diethelm K, Ford NJ, Freed AD. A Predictor-Corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002; 29 (1): 3-22. doi: 10.1023/A:1016592219341.
- [26] Diethelm K, Walz G. Numerical solution of fractional order differential equations by extrapolation. Numer Algorithms. 1997; 16 (3): 231-253. doi: 10.1023/A:1019147432240.
- [27] Diethelm K, Ford NJ. Analysis of fractional differential equation. J Math Anal Appl. 2002; 265 (2): 229-248. doi: 10.1006/jmaa.2000.7194.
- [28] Yang XJ, Machado JAT, Srivastava HM. A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach. Appl Math Comput. 2016; 274 (1): 143-151. URL http://dx.doi.org/10.1016/j.amc.2015.10.072.
- [29] Yang XJ, Baleanu D, Lazarević MP, Cajić MS. Fractal boundary value problems for integral and differential equations with local fractional operators. Thermal Science. 2015; 19 (3): 959-966. doi: 10.2298/TSCI130717103Y.
- [30] Koca I. A method for solving differential equations of q-fractional order. Appl Math Comput. 2015; 266 (C): 1-5. doi: 10.1016/j.amc.2015.05.049.
- [31] Vijesha VA, Roya R, Chandhini G. A modified quasilinearization method for fractional differential equations and its applications. Appl Math Comput. 2015; 266: 687-697. doi: 10.1016/j.amc.2015.05.132.
- [32] Biala TA, Jator SN. Block implicit Adams methods for fractional differential equations. Chaos Solitons and Fractals. 2015; 81 (A): 365-377. URL http://dx.doi.org/10.1016/j.chaos.2015.10.007.
- [33] Esmaeili S, Shamsi M. A pseudo-spectral scheme for the approxiamte solution of a family of fractional differential equations. Nonlinear Sci Numer Simul. 2011; 16 (9): 3646-3654. doi: 10.1016/j.cnsns.2010.12.008.
- [34] Esmaeili S, Shamsi M, Luchko Y. Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput Math Appl. 2011; 62 (3): 918-929. URL http://dx.doi.org/10.1016/j.camwa.2011.04.023.
- [35] Mokhtary P, Ghoreishi F, Srivastava HM. The Müntz-Legendre Tau method for fractional differential equations. Appl Math Model. 2016; 40 (2): 671-684. URL http://dx.doi.org/10.1016/j.apm.2015.06.014.
- [36] Rapaić MR, Šekara TB, Govedarica V. A novel class of fractionally orthogonal quasi-polynomials and new fractional quadrature formulas. Appl Math Comput. 2014; 245 (C): 206-219. doi: 10.1016/j.amc.2014.07.084.
- [37] Yang XJ, Srivastava HM, Machado JAT. A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow. Thermal Science. 2016; 20 (2): 753-756. doi: 10.2298/TSCI151224222Y.
- [38] Yang XJ, Baleanu D, Srivastava HM. Local Fractional Integral Transforms and Their Applications. Elsevier: Academic Press; 2015. ISBN: 9780128040027.
- [39] Yang XJ, Machado JAT, Hristov J. Nonlinear dynamics for local fractional Burgers’ equation arising inn fractal flow. Nonlinear Dyn. 2016; 84: 3-7.
- [40] Doha EH, Bhrawy AH, Ezz-Eldien SS. A new Jacobi operational matrix: An application for solving fractional differential equations. Appl Math Model. 2012; 36 (10): 4931-4943. URL http://dx.doi.org/10.1016/j.apm.2011.12.031.
- [41] Bhrawy AH, Tharwat MM, Yildirim A. A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations. Appl Math Model. 2013; 37 (6): 4245-4252. URL http://dx.doi.org/10.1016/j.apm.2012.08.022.
- [42] Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput Math Appl. 2010; 59 (3): 1326-1336. URL http://dx.doi.org/10.1016/j.camwa.2009.07.006.
- [43] Song L, Wang W. A new improved adomian decomposition method and its application to fractional differential equations. Appl Math Model. 2013; 37 (3): 1590-1598. URL http://dx.doi.org/10.1016/j.apm.2012.03.016.
- [44] Chen Y, Ke X, Wei Y. Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl Math Comput. 2015; 251: 475-488. URL http://dx.doi.org/10.1016/j.amc.2014.11.079.
- [45] Jia J, Wang H. A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J Comput Phys. 2015; 299: 842-862. URL http://dx.doi.org/10.1016/j.jcp.2015.06.028.
- [46] Deng J, Zhao L, Wu Y. Efficient algorithms for solving the fractional ordinary differential equations. Appl Math Comput. 2015; 269 (C): 196-216. doi: 10.1016/j.amc.2015.07.048.
- [47] Kumar P, Agrawal OP. Numerical scheme for the solution of fractional differential equations of order greater than one. J Comput Nonlinear Dyn. 2006; 1 (2): 178-185. doi: 10.1115/1.2166147.
- [48] Ford N, Morgado M, Rebelo M. Nonpolynomial collocation approximation of solutions to fractional differential equations. Fractional Calculus and Applied Analysis. 2013; 16 (4): 874-891. doi: 10.2478/s13540-013-0054-3.
- [49] Kazem S, Abbasbandy S, Kumar S. Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model. 2013; 37 (7): 5498-5510. URL http://dx.doi.org/10.1016/j.apm.2012.10.026.
- [50] Podlubny I. Fractional Differential Equations. San Diego: Academic Press; 1999. ISBN: 0125588402.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a62b10-543a-4336-a1bb-42d94b190464