Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, seven core carbonate samples were collected from the marine Upper Cretaceous (Turonian–Coniacian) limestone in two wells in the East Baghdad Oilfield of the Mesopotamian Basin. The Turonian–Coniacian period is regarded as the archetypal warm interval as well as a pivotal epoch in biological evolution. The carbonate strata of the Khasib Formation in the East Baghdad Oilfield of the Mesopotamian Basin were chosen as a model. The paleoenvironment was reconstructed using petrological characteristics and concentrations of major, trace, and rare earth elements (REEs), as well as carbon, oxygen, and strontium isotopic studies. The data suggest that the paleotemperature of the seawater was 28ºC, that suboxic-anoxic paleoredox conditions were present, that the paleosalinity of the seawater was minimal, and a biological explosion occurred when the temperature dropped to a point where life could survive. Dolomite dissolution, influenced by early meteoric water, established the groundwork for high-quality reservoirs, and leftover dolomite also protected natural oil. This research adds to the paleoenvironmental record and offers a theoretical foundation for future natural oil exploitation.
Czasopismo
Rocznik
Tom
Strony
art. no. e43
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
- Department of Geology, College of Science, University of Baghdad, Iraq
Bibliografia
- 1. Al-Ameri, T.K. and Al-Obaydi, R.Y. 2011. Cretaceous petroleum system of the Khasib and Tannuma oil reservoir, East Baghdad oil field, Iraq. Arabian Journal of Geosciences, 4, 915–932. DOI: 10.1007/s12517-009-0115-4
- 2. Al-Ameri, T., 2011. Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Marine and Petroleum Geology, 28, 880–894. DOI:10.1016/j.marpetgeo.2010.06.003
- 3. Al-Hamdani, A.M. 1986. Stratigraphy and geochemistry of Khasib, Tanuma and Saadi Formations in East Baghdad Oilfield, Central Iraq. Unpublished Ph.D. Thesis, 324 pp. College of Science, University of Baghdad; Baghdad.
- 4. AL-Tamimi, A.K.H. 2014. Hydrocarbon characterization and affinities of East Baghdad oil field, Iraq. Unpublished M.Sc. Thesis, 149 pp, College of Science, University of Baghdad; Baghdad.
- 5. Abdel-Fattah, M.I., Mahdi, A.Q. and Theyab, M.A. 2022. Lithofacies classification and sequence stratigraphic description as a guide for the prediction and distribution of carbonate reservoir quality: A case study of the Upper Cretaceous Khasib Formation (East Baghdad oilfield, central Iraq). Journal of Petroleum Science and Engineering, 209, 109835.
- 6. Ali, R.A. 2023a. Geochemistry and Paleoredox Conditions of the Carbonate Reservoir Khasib Formation in East Baghdad Oilfield-Central Iraq. Journal of Petroleum Research and Studies, 41, 16–36.
- 7. Ali, R.A. 2023b. Dolomitization mechanism of Pila Spi formation (middle–late Eocene) in the high folded zone, Northern Iraq. Kuwait Journal of Science, 50, 105–114.
- 8. Ali, R.A. 2023c. Petrography and Geochemistry of Zubair Shale Formation in Rumaila Oilfield, Southern Iraq: Implications for Provenance and Tectonic Setting. Journal of Petroleum Research and Studies, 13, Issue 40, 19–40.
- 9. Ali, R.A. and Jassim, H.K. 2023. Sedimentology and geochemistry of Zubair Formation sandstone reservoir, East Baghdad Oilfield, central Iraq. Kuwait Journal of Science, 50, 427–437.
- 10. Al-Qayim, B. 2010. Sequence Stratigraphy and Reservoir Characteristics of the Turonian–Coniacian Khasib Formation in Central Iraq. Journal of Petroleum Geology London, 33, 387–404.
- 11. Berner, R. A. and Kothavala, Z. 2001. Geocarb III: A Revised Model of Atmospheric CO 2 over Phanerozoic Time. American Journal of Science, 301, 182–204.
- 12. Besen, R.M., Achilles, M., Alivernini, M., Voigt, P.F. and Struck, U. 2022. Stratigraphy and palaeoenvironments in the upper Turonian to lower Coniacian of the Saxonian Cretaceous Basin (Germany) – insights from calcareous and agglutinated foraminifers. Acta Geologica Polonica, 72, 159–186.
- 13. Bice, K. L., Huber, B. T. and Norris, R. D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ 18O record at Deep Sea Drilling Project Site 511. Paleoceanography, 18, 1031.
- 14. Bolhar, R. and Van Kranendonk, M.J. 2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155, 229e250.
- 15. Bromhead, A. D., Van Buchem, F.S.P., Simmons M.D. and Davies, R.B. 2022. Sequence stratigraphy, palaeogeography and petroleum plays of the Cenomanian–Turonian succession of the Arabian Plate: An updated synthesis. Journal of Petroleum Geology, 45, 119–162.
- 16. Chen, G., Sun, Z., Nie, F., Li, C., Zhen, Y. and Zhou, Z. 2020. Hydrogeochemical characteristics of the sandstone-hosted uranium mineralization in northern Ordos Basin, China. Ore Geology Reviews, 126, 103769.
- 17. Colín-Rodríguez, A., Núnez-Useche, F. and Adatte, T. 2023. The expression of late Cenomanian–Coniacian episodes of accelerated global change in the sedimentary record of the Mexican Interior Basin. Cretaceous Research, 143, 105380.
- 18. Duda, P., Blumenberg, M. and Thiel, V. 2014. Geobiology of a palaeoecosystem with Ediacara-type fossils: the Shibantan member (Dengying Formation, South China). Precambrian Research 255, 48e62.
- 19. Eldrett, J. S., Ma, C., Bergman, S. C., Lutz, B. and Gregory, F.J. 2015. An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy. Cretaceous Research, 56, 316–3440.
- 20. Ezampanah, Y., Scopelliti, G., Sadeghi, A. and Adabi, M.H. 2021. Turonian–Maastrichtian biostratigraphy and isotope stratigraphy of the Kopet-Dagh Basin deposits, northeastern Neo-Tethys, Iran. Palaeogeography, Palaeoclimatalogy, Palaeocology, 581, 110605.
- 21. Fayadh, A.H. and Nasser, M.E. 2018. 3D Geological Model for Khasib, Tanuma, and Sa’di formations of Halfaya Oil Field in Missan Governorate-Southern Iraq. Iraqi Journal of Science, 59, 875–885
- 22. Frijia, G., Parente, M., Lucia, M. and Mutti, M. 2015. Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian–Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretaceous Research, 53, 110–139.
- 23. Flügel, E. 1982. Microfacies Analysis of Limestone, 633 pp. Springer-Verlag; New York,
- 24. Huber, B.T., MacLeod, K.G., Watkins, D.K. and Coffin, M.F. 2018. The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change, 167, 1–23.
- 25. Gayara, A.D. and Al Khaykanee, M.H. 2015. Paleoenvironments and Sequence Stratigraphy of the Turonian–Lower Campanian Succession at Majnoon Oil Field, Southern Iraq. Iraqi Journal of Science, 56, 2880–2886.
- 26. Geerken, E., Nooijer, L.J. and Dijk, I.V. 2018. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents. Biogeosciences, 15, 2205e22188.
- 27. Gundogar, D.Y. and Sasmaz, A., 2022. Geochemical Approach to Determine the Possible Precipitation Parameters of the Coniacian–Santonian Mazidagi Phosphates, Mardin, Turkey. Minerals, 12, 1544.
- 28. Hay, W.W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29, 725–753.
- 29. Jaffrés, J.B.D., Shields, G.A. and Wallmann, K. 2007. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Science Reviews, 83, 83–122.
- 30. Jameel, L.A., Kadhim, F.S. and Al-Sudani, H.I. 2020. Geological Model for Khasib Formation of East Baghdad Field Southern Area. Journal of Petroleum Research and Studies, 28 (9), E21–E35.
- 31. Jarvis, I., Gale, A. S., Jenkyns, H.C. and Pearce, M.A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine, 143, 561–608.
- 32. Jarvis, I., Alexandre, J.T., Grocke, D.R., Ulicny, D. and Laurin, J., 2015. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous). The Depositional Record, 1, 53–90.
- 33. Jeans, C.V., Wray, D.S., Williams, C.T., Bland, D.J. and Wood, C.J., 2021. Redox conditions, glacio-eustasy, and the status of the Cenomanian–Turonian Anoxic Event: new evidence from the Upper Cretaceous Chalk of England. Acta Geologica Polonica, 71, 103–152.
- 34. Jiu, B., Huang, W. and Mu, N. 2021. Types and controlling factors of Ordovician paleokarst carbonate reservoirs in the southeastern Ordos Basin, China. Journal of Petroleum Science and Engineering, 198, 108162.
- 35. Jones, B. and Manning, D.A.C. 1994. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 114, 111e129.
- 36. Joo, Y.J. and Sageman, B.B. 2014. Cenomanian to Campanian carbon isotope chemostratigraphy from the Western Interior Basin. Journal of Sedimentary Research, 84, 529–542.
- 37. Hussain, S.H., Al-Juboury, A.I., Al-Haj, M.A., Armstrong-Altrin, J.S. and Al-Lhaebi, S.F., 2021. Mineralogy and geochemistry of the Late Triassic Baluti Formation, Northern Iraq. Journal of African Earth Sciences, 181, 104243.
- 38. Krabbenhoft, A., Eisenhauer, A. and Bohm, F. 2010. Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, ẟ88/ 86Sr) of carbonates, hydrothermal solutions, and river waters. Geochem. Coscmochim. Acta, 74, 4097e4109.
- 39. Lash, G.G. 2018. Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA. Marine and Petroleum Geology, 91, 470e479.
- 40. Li, C., Wu, H. and Chu, Z. 2019. Precise determination of radiogenic Sr and Nd isotopic ratios and Rb, Sr, Sm, Nd elemental concentrations in four coal ash and coal fly ash reference materials using isotope dilution thermal ionization mass spectrometry. Microchemical Journal, 146, 906e913.
- 41. Li, H., Zhang, S., Han, J. and Zhong, T. 2022. Astrochronologic calibration of the Shuram carbon isotope excursion with new data from South China. Global and Planetary Change, 209, 103749.
- 42. Linnert, C., Robinson, S.A., Lees, J.A., Pérez-Rodríguez, I., Jenkyns, H.C., Jenkyns, H.C., Petrizzo, M.R., Arz, J.A., Bown, P.R. and Falzoni, F. 2018. Did Late Cretaceous cooling trigger the Campanian–Maastrichtian Boundary Event? Newsletters on Stratigraphy, 51, 145–166.
- 43. McArthur, J.M. and Howarth, R.J. 2024. Strontium isotope stratigraphy of the Cretaceous. Geological Society, London, Special Publications, 544, 343–366.
- 44. Mehrabi, H., Yahyaei, E., Navidtalab, A., Rahimpour-Bonab, H., Abbasi, R., Omidvar, M., Assadi, A. and Honarmand, J. 2023. Depositional and diagenetic controls on reservoir properties along the shallow-marine carbonates of the Sarvak Formation, Zagros Basin: Petrographic, petrophysical, and geochemical evidence. Sedimentary Geology, 454, 106457.
- 45. Mohammed, A., Dhaidan, M. and Al-Hazaa, S.H. 2022. Reservoir characterization of the upper Turonian–lower Coniacian Khasib formation, South Iraq: Implications from electrofacies analysis and a sequence stratigraphic framework. Journal of African Earth Sciences, 186, 104431.
- 46. Morse, J.W. and Mackenzie, F.T. 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology, 48, 373–446.
- 47. O’Neil, J.R., Clayton, R.N. and Mayeda, T.K. 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemicla Physica, 51 (12), 5547–5558.
- 48. Prasanta, K.M. and Sarada, P.M. 2021. Geochemistry of carbonate rocks of the Chilpi group, Bastar Craton, India: implications on ocean paleoredox conditions at the late paleoproterozoic era. Precambrian Research, 353, 106023.
- 49. Ren, Y., Zhong, D. and Gao, C. 2019. The paleoenvironmental evolution of the Cambrian Longwangmiao Formation (stage 4, Toyonian) on the Yangtze platform, South China: petrographic and geochemical constrains. Marine and Petroleum Geology, 100, 391e411.
- 50. Ruidas, D.K. and Zijlstra, J.J.P. 2023. The hardgrounds of the Turonian–Coniacian carbonates of the Bagh Group of central India. Journal of Earth System Science, 132, 27.
- 51. Salmouna, D.J., Chaabani, F., Dhahri, F., Mzoughi, M., Salmouna, A. and Zijlstra, H.B. 2014. Lithostratigraphic analysis of the Turonian–Coniacian Bireno and Douleb carbonate Members in Jebels Berda and Chemsi, Gafsa basin, central-southern Atlas of Tunisia. Journal of African Earth Sciences, 100, 733–754.
- 52. Saltzman, M.R. and Edwards, C.T. 2017. Gradients in the carbon isotopic composition of Ordovician shallow water carbonates: A potential pitfall in estimates of ancient CO 2 and O 2. Earth and Planetary Science Letters, 464, 46–54.
- 53. Sarangi, S. Mohanty, S.P. and Barik, A. 2017. Rare earth element characteristics of Paleoproterozoic cap carbonates pertaining to the Sausar Group, Central India: implications for ocean paleoredox conditions. Journal of Asian Earth Science, 148, 31e50.
- 54. Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S., Heward, A., Horbury, A. and Simmons, M.D., 2001. Arabian Plate Sequence Stratigraphy. GeoArabia Special Publication, 2, 1–387. Gulf PetroLink.
- 55. Steuber, T. 2001. Strontium isotope stratigraphy of Turonian– Campanian Gosau-type rudist formations in the Northern Calcareous and Central Alps (Austria and Germany). Cretaceous Research, 22, 429–441.
- 56. Tarduno, J.A., Brinkman, D.B., Renne, P.R., Cottrell, R.D., Scher, H. and Castillo, P. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science, 282, 2241–2243.
- 57. Total, C.F. 1984. Sedimentation and diagenesis study of Tanuma and Khasib reservoirs, synthesis of the available core data, 98 pp. Interim report, INOC Library; Baghdad.
- 58. Tukkee, I.Q.H., Hussain, S.A. and Sahaab, A.M. 2023. Reservoir Characteristics for Khasib Formation in selected wells of East Baghdad Oil field, Iraq. Iraqi Journal of Science, 64, 4502–4517.
- 59. Turgeon, S. and Brumsack, H.-J. 2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian– Turonian Boundary Event (Cretaceous) in the Umbria- Marche Basin of central Italy. Chemical Geology, 234, 321–339.
- 60. Wang, Q., Wen, T., Li, H., Zeng, X., Wang, X., Xin, J. and Sun, L. 2022. Influence of heterogeneity on fluid property variations in carbonate reservoirs with multistage hydrocarbon accumulation: A case study of the Khasib formation, Cretaceous, AB oilfield, southern Iraq. Open Geosciences, 14, 663–674.
- 61. Wilson, P.A., Norris, R.D. and Cooper, M.J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30, 607–610.
- 62. Yang, J.-Q., Zhang, J.-T., He, Z.-L. and Zhang, T. 2023. Paleoenvironment reconstruction of the Middle Ordovician thick carbonate from western Ordos Basin, China. Petroleum Science, 20, 48–59.
- 63. Zhang, K. and Shields, G.A. 2022. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth-Science Reviews, 229, 104015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a35459-f9db-4485-ba14-7f7e9136986b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.