Identyfikatory
Warianty tytułu
Weryfikacja ortotropowego modelu drewna
Języki publikacji
Abstrakty
The paper is dedicated to the discussion of elastic coefficients of wood. Parameters for wood presented in the literature are critically evaluated and discussed. The orthotropic mathematical model, with nine different elastic parameters, is one of the most often used models of wood. However, mathematical limitations on these parameters for the correct model are not well known. Based on these limitations, the verification of orthotropic elastic parameters for different species of wood is presented. The analysis shows that the published data are often unclear and sometimes wrong. The attempt to relate experimental results to the mean values specified in the standards is the second aspect considered in this paper. The designer, a user of these standards, should have clear information that the given parameters are specified for specific mathematical model and species of wood. This paper attempts to propose such a classification.
W niniejszej pracy podjęto próbę uporządkowania rozważań o ortotropowym modelu drewna i podjęto próbę weryfikacji, czy podawane w literaturze stałe materiałowe spełniają warunki ograniczeń dla stałych technicznych materiału ortotropowego. Oryginalnym sposobem zdefiniowania ograniczeń na stałe techniczne (wynikających z dodatniej określoności macierzy podatności), zaproponowanym w pracy, jest wyznaczenie wartości własnych macierzy podatności. Jeżeli wszystkie wartości własne są dodatnio określone, to macierz podatności jest dodatnio określona. W przypadku materiału ortotropowego nie udaje się podać rozwiązania zagadnienia własnego macierzy podatności w postaci ogólnej, ale można badać wartości własne dla konkretnych danych. Oprócz sprawdzenia ograniczeń na stałe techniczne istotne jest również sprawdzenie, czy otrzymane z badań eksperymentalnych stałe spełniają warunek symetrii macierzy podatności.
Czasopismo
Rocznik
Tom
Strony
31--44
Opis fizyczny
Bibliogr. 46 poz., tab.
Twórcy
autor
- Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
Bibliografia
- 1. B.D. Annin, N.I. Ostrosablin, “Anisotropy of elastic properties of materials”, Applied Mechanics and Technical Physic 49 (6): 998-1014, 2008.
- 2. J. Bodig, B.A. Jayne, “Mechanics of wood and wood composites”, Van Nostrand Reinhold, New York, 1982.
- 3. P.H. Boulanger, M. Hayes, “Poisson’s ratio for orthorhombic materials”, Journal of Elasticity 50: 87-89, 1998.
- 4. V. Bucur, R.R. Archer, “Elastic constants for wood by an ultrasonic method”, Wood Science and Technology 18: 255-265, 1984.
- 5. P. Chadwick, M. Vianello, S.C. Cowin, “A new proof that the number of linear elastic symmetries is eight”, Journal Mechanics Physical Solids 49: 2471-2492, 2001.
- 6. S.C. Cowin, “A recasting of anisotropic poroelasticity in matrices of tensor components”, Transport in Porous Media 50: 35-56, 2003.
- 7. U. Dackerman, R. Elsener, J. Li, K. Crews, “A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood”, Construction and Building Materials 102: 963-976, 2016.
- 8. B. Faggiano, A. Marzo, A. Formisano, F.M. Mazzolani, “Innovative steel connections for the retrofit of timber floors in ancient buildings: a numerical investigation”, Computer and Structures 87: 1-13, 2009.
- 9. J. German, “Podstawy mechaniki kompozytów włóknistych”, Politechnika Krakowska, Kraków, 1996.
- 10. Yu.V. Gorbachev, V.N. Kuznetsov, “Elastic properties of oiled beech wood”, Problemy Prochnosti 12: 14-16, 1971.
- 11. S. Hajdarević, I. Busuladžić, “Stiffness analysis of wood chair frame”, Procedia Engineering 100: 746-755, 2015.
- 12. S. Hering, D. Keunecke, P. Niemz, “Moisture-dependent orthotropic elasticity of beech wood”, Wood Science and Technology 46: 927-938, 2012.
- 13. G.Y. Jeong, D.P. Hidman, A. Zink-Sharp, “Orthotropic properties of loblolly pine (Pinus taeda) strands”, Journal of Materials Science 45: 5820-5830, 2010.
- 14. G.Y. Jeong, M.J. Park, “Evaluate orthotropic properties of wood using digital image correlation”, Construction and Building Materials 113: 864-869, 2016.
- 15. B. Kasal, “Wood Formation and Properties. Mechanical Properties of Wood”, Elsevier, pp. 1815-1828, 2004.
- 16. J.L. Katz, P. Spencer, Y. Wang, A. Misra, O. Marangos, L. Friis, “On the anisotropic elastic properties of woods”, Journal of Materials Science 43: 139-145, 2008.
- 17. D. Keunecke, S. Hering, P. Niemz, “Three-dimensional elastic behaviour of common yew and Norway spruce”, Wood Science and Technology 42 (8): 633-647, 2008.
- 18. D. Keunecke, W. Sonderegger, K. Pereteau, T. Luthi, P. Niemz, “Determination of Young’s and shear moduli of common yew and Norwey spruce by means of ultrasonic waves”, Wood Science and Technology 41: 309-327, 2007.
- 19. M. Khelifa, N. Vila Loperena, L. Bleron, A. Khennane, “Analysis of CFRP-strengthened timber beams”, Journal of Adhesion Science and Technology 28 (1): 1-14, 2014.
- 20. C. Kohlhauser, C. Hellmich, “Determination of Poisson’s ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffness: Application to metals and wood”, European Journal of Mechanics A/Solids 33: 82-98, 2012.
- 21. P. G. Kossakowski, “Mixed mode I/II fracture toughness of pine wood”, Archives of Civil Engineering 55 (2): 199-227, 2009.
- 22. D.E. Kreteschmann, “Wood Handbook – Wood as an Engineering Material. Chapter 5, Mechanical Properties of Wood”, Madison, Wisconsin, 2010.
- 23. L. Kyzioł, ”Zastępcze stałe materiałowe drewna konstrukcyjnego modyfikowanego powierzchniowo PMM”, Zeszyty naukowe Akademii Marynarki Wojennej 1 (160): 69-82, 2005.
- 24. P. Lacki, A. Derlatka, ”Analiza numeryczna konstrukcji drewnianej jako struktury ortotropowej”, Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo 19: 69-76, 2013.
- 25. B.M. Lempriere, “Poisson’s ratio in orthotropic materials”, AIAA Journal 6 (11): 2226-2227, 1968.
- 26. J. Malesza, “Effective model for analysis of wood-framed timber structures”, Archives of Civil Engineering 63 (2): 99-112, 2017.
- 27. N.T. Mascia, E.A. Nicolas, “Determination of Poisson’s ratios in relation to fiber angle of tropical wood species”, Construction and Building Materials 41: 691-696, 2013.
- 28. N.T. Mascia, L. Vanalli, “Evaluation of the coefficients of mutual influence of wood through off-axis compression tests”, Construction and Building Materials 30: 522-528, 2012.
- 29. P. Niemz, T. Ozyhar, S. Hering, W. Sonderegger , “Moisture dependent physical-mechanical properties from beech wood in the main directions”, PRO LIGNO 11 (4): 37-42, 2015.
- 30. N.I. Ostrosablin, “Equations of the linear theory of elasticity”, Journal of Applied Mechanics and Technical Physics 33 (3): 438-446, 1992.
- 31. T. Ozyhar, S. Hering, P. Niemz, “Moisture-dependent elastic and strength anisotropy of European beech wood in tension”, Journal of Material Science 47 (6): 6141-6150, 2012.
- 32. T. Ozyhar, S. Hering, P. Niemz, “Moisture-dependent orthotropic tension-compression asymmetry of wood”, Holzforschung 67 (4): 395-404, 2013.
- 33. T. Ozyhar, S. Hering, S.J. P. Sanabria, Niemz, “Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves”, Wood Science and Technology 47: 329-341, 2013.
- 34. PN-EN 338:1999 Timber structures – Strength classes.
- 35. PN-EN 1995-1-1:2010 Design of timber structures.
- 36. M. Rovati, “On the negative Poisson’s ratio of an orthorhombic alloy”, Scripta Mater 48 (3): 235-240, 2003.
- 37. J. Schmidt, M. Kaliske, “Models for numerical failure analysis of wooden structures”, Engineering Structures 31: 571-579, 2009.
- 38. E. Serrano, “Glued-in rods timber structures – a 3D model and finite element parameter studies”, International Journal of Adhesion & Adhesives 21: 115-127, 2001.
- 39. J. Smardzewski, “Effect of cyclic wood heterogeneity on the distribution of shear stress in glue bonded joints”, Folia Forestalia Polonica 31: 119-130, 2000.
- 40. A. Tabiei, J. Wu, “Three-dimensional nonlinear orthotropic finite element material model for wood”, Composite Structures 50: 143-149, 2000.
- 41. T.C.T. Ting, “Positive definiteness of anisotropic elastic constants”, Mathematic Mechanical Solids 1: 301-314, 1996.
- 42. T.C.T. Ting, “Very large Poisson’s ratio with a bounded transverse strain in anisotropic elastic materials”, Journal of Elasticity 77: 163-176, 2004.
- 43. T.C.T. Ting, T. Chen, “Poisson’s ratio for anisotropic elastic materials can have no bounds”, Quarterly Journal of Mechanics and Applied Mathematics 58 (1): 73-82, 2005.
- 44. E. Vidal-Salle, P. Chassagne, “Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model. Application to wood material”, Mechanics of Time-Dependent Materials 11: 127-142, 2007.
- 45. S. Vratuša, M. Kitek Kuzman, V. Kilar, “Structural particulars of glued laminated beams of variable height”, Drewno 54 (185):19-38, 2011.
- 46. Q.S. Zheng, T. Chen, “New perspective on Poisson’s ratio of elastic solids”, Acta Mechanica 150: 191-195, 2001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a246b4-ce79-4ad8-bcc7-77ff00889e1f