Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Reduction of three industrial nickel oxides (Goro, Tokyo and Sinter 75) with a hydrogen bearing gas was revisited in the temperature interval from 523 to 673 K (250 to 400°C). A pronounced incubation period is observed in the temperature interval tested. This period decreases as the reduction temperature increases. Thermogravimetric data of these oxides were fitted using the Avrami-Erofeyev kinetic model. The reduction of these oxides is controlled by a nucleation and growth mechanism of metallic nickel over the oxides structure. Rate kinetic constants were re-evaluated and the activation energy for the reduction of these oxides was re-calculated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
781--789
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Ciitec-Instituto Politécnico Nacional, Cerrada Cecati S/N, CD. De México, C. P. 02250, México
Bibliografia
- [1] N. Koga, J. Malek, J. Sestak, H. Tanaka, Netsu Sokutei. 20, 210-223 (1993).
- [2] T. A. Utigard, G. Plascencia, T. Marin, J. Liu, A. Vahed, M. Muinonen, Can. Met. Q. 44, 421-428 (2005).
- [3] T. A. Utigard, M. Wu, G. Plascencia, T. Marin, Chem. Eng. Sci. 60, 2061-2068 (2005).
- [4] G. Plascencia, T. Utigard, Chem. Eng. Sci. 64, 3879-3888 (2009).
- [5] T. Hidayat, M. A. Rhamdhani, E. Jak, P. C. Hayes, Met. Mater. Trans. B. 40B, 1-16 (2009).
- [6] T. Hidayat, M. A. Rhamdhani, E. Jak, P. C. Hayes, Met. Mater. Trans. B. 40B, 462-473 (2009).
- [7] T. Hidayat, M. A. Rhamdhani, E. Jak, P. C. Hayes, Met. Mater. Trans. B. 40B, 474-489 (2009).
- [8] A. Benton, P. Emmett, J. Am. Chem. Soc. 46, 2728-2737 (1924).
- [9] G. Parravano, J. Am. Chem. Soc. 74, 1194-1198 (1952).
- [10] Y. Iida, K. Shimada, Bull. Chem. Soc. Jpn. 33, 1194-1196 (1960).
- [11] Z. Zhou, L. Han, G. M. Bollas, Int. J. Hydrogen Energy 39, 8535-8556 (2014).
- [12] B. Jankovic, B. Adnadevic, S. Mentus, Thermochim. Acta 456, 48-55 (2007).
- [13] B. Jankovic, B. Adnadevic, S. Mentus, Chem. Eng. Sc. 63, 567-575 (2008).
- [14] J. Szekely, C.I. Lin, H.Y. Sohn, Chem. Eng. Sci. 28, 1975-1989 (1973).
- [15] J. T. Richardson, R. Scates, M. V. Twigg, Appl. Catal. A. 246, 137-150 (2003).
- [16] B. Delmon, A. Roman, J. Chem. Soc. Faraday Trans. I. 69, 941-948 (1973).
- [17] Q. Jeangros, T. W. Hansen, J. B. Wagner, C. D. Damsgaard, R. E. Dunin-Borkowski, C. Hébert, J. Van Herle, A. Hessler-Wyser, J. Mater. Sci. 48, 2893-2907 (2013).
- [18] K. V. Manukyan, A. Avetisyan, C. Shuck, H. Chatilyan, S. Rouvimov, S. Kharatyan, A.S. Mukasyan, J. Phys. Chem. C. 119, 16131-16138 (2015).
- [19] J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, J. Y. Kim, M. Pérez, J. Am. Chem. Soc. 124, 346-354 (2002).
- [20] A. Khawam, D. R. Flanagan, J. Phys. Chem. B. 110, 17315-17328 (2006).
- [21] B. V. L’vov, Russ. J. Appl. Chem. 83, 728-736 (2010).
- [22] D. K. Kuhn, H. H. Johnson, Acta Metall. Mater. 39, 2901-2908 (1991).
- [23] S. P. Zholobov, M. D. Malev, Zh. Tekh. Fiz. 41, 677 (1971).
- [24] A. Atkinson, R. I. Taylor, Phil. Mag. A, 39, 581-595 (1979).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a0c7c3-ce9c-4313-a859-d334c7277077