PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular Dynamics Simulations of Thermal Conductivity of Penta-Graphene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for the [100] direction) at the room temperature of 300 K is about 18.7 W/(m K), which is much lower than the thermal conductivity of graphene. As the temperature increases, the thermal conductivity of PG is decreasing because, unlike graphene, PG has lower phonon group velocities and few collective phonon excitations. The obtained dependence of the thermal conductivity on the temperature can be described as κ ∼ T −0.32. For the [110] direction the thermal conductivity at the room temperature of 300 K is very similar: about 17.8 W/(m K). In this case, the temperature dependence follows the κ ∼ T −0.3 relation. Our investigations reveal that the thermal conductivity of PG is isotropic, meaning that heat transport behavior is independent of the heat flow direction. Our results indicate that the thermal conductivity of PG depends in an interesting way on the applied strain: nonmonotonic up-and-down behavior is observed. The thermal conductivity increases between strains from 0% up to 12.5%, and it decreases above a strain of 12.5%. Our investigation highlights the fascinating thermal transport properties of penta-graphene. The ultra-low thermal conductivity, the decreasing thermal conductivity with the increasing temperature, and the ultra-high mechanical strength of PG show that PG possesses a great potential in thermoelectric and nanomechanics applications. We hope that these findings, made by means of simulations, will become a bridge to inspire and encourage the experimental works, especially in the synthesis of PG.
Rocznik
Strony
191--220
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80–233 Gdansk, Poland
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80–233 Gdansk, Poland
Bibliografia
  • [1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva IV and Firsov A A 2004 Science 306 (5696) 666
  • [2] Bucknum M J and Hoffmann R 1994 J Am Chem Soc 116 (25) 11456
  • [3] Malko D, Neiss C, Viñes F and Görling 2012 Phys Rev Lett 108 (8 )86804
  • [4] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, and Jena P 2015 Proc. Natl. Acad. Sci.USA 112 (2372) 2372
  • [5] Einollahzadeh H, Dariani R S and Fazeli S M 2016 Solid State Commun. 229 1
  • [6] Yu Z G and Zhang Y W 2015 J. Appl. Phys.118 (16) 165706
  • [7] Wang Z, Dong F, Shen B, Zhang R, Zheng Y, Chen L, Wang S, Wang C, Ho K, Fan Y J,Jin B Y and Su W S 2016 Carbon 101 77
  • [8] Quijano-Briones J J, Fernandez-Escamilla H N and Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys.18 15505
  • [9] Berdiyorov G R, Dixit G and Madjet M E 2016 J. Phys. Condens. Matter 28 (47) 475001
  • [10] Li X, Zhang S, Wang F Q, Guo Y, Liu J and Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191
  • [11] Guo Y, Wang F Q and Wang Q 2017 Appl. Phys. Lett. 111 73503
  • [12] Xiao B, Li Y C, Yu X F and Cheng J B 2016 ACS Appl. Mater. Interfaces 8 35342
  • [13] Xu W, Zhang G and Li B 2015 143 (15) 154703
  • [14] Sun Z, Yuan K, Zhang X, Qin G, Gong X and Tang D 2019 Physical Chemistry Chemical Physics 21 (28) 15647
  • [15] Hoover W G and Hoover C G 2005 Condensed Matter Physics 247
  • [16] OVITO - The Open Visualization Tool 2019http://www.ovito.org/
  • [17] Winczewski S, Shaheen M Y and Rybicki J 2018 Carbon 126 165
  • [18] Tersoff J 1989 Phys. Rev. B 39 5566
  • [19] Tersoff J 1990 Phys. Rev. B 41 3248
  • [20] Erhart P, Albe K 2005 Phys. Rev. B 71 35211
  • [21] Winczewski S and Rybicki J 2019 Carbon 146 572
  • [22] Tersoff J 1988 Phys. Rev. B 6991
  • [23] Sandia Corporation 2019 LAMMPS Documentation
  • [24] VMD – The Visual Molecular Dynamics 2020 https://www.ks.uiuc.edu/Research/vmd/
  • [25] GNUPlot 2020http://www.gnuplot.info/
  • [26] Wu X, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K and Luo T 2016 Nano Lett. 16 (6) 3925
  • [27] Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W and Zhang X 2017 Computational Materials Science 137 195
  • [28] Wang F Q, Yu J, Wang Q, Kawazoe Y and Jena P 2016 Carbon 105 424
  • [29] Muller-Plathe F 1997 J. Chem. Phys.106 6082
  • [30] Li J and Lee J D 2014 Acta Mechanica 225 (4-5) 1223
  • [31] Cao A 2012 Journal of Applied Physics 111 (8) 83528
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a0b84b-16ce-4e8d-9fb9-1da85a56630f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.