PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and use of alginate-based composites with the addition of graphene oxide for the removal of dyes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial wastewater containing dyes is a significant burden to the environment. Many physicochemical methods have been used to remove these compounds. An interesting solution is the use of sorbents of natural origin. This paper describes a method for obtaining sorbents in the form of composite granules formed from a 2% alginate solution with the addition of 2.81% solution of graphene oxide (GO). The possibility of using the obtained granules for removing cationic dyes (methylene blue, rhodamine B, toluidine blue, Victoria blue B) and anionic dyes (orange II, Congo red, methyl blue) was investigated. As a result of the research it was demonstrated that the chemical and structural composition of the dye has a decisive influence on its sorption on composite granules. In cationic dyes, the number and order of amino groups are responsible for the rejection. In anionic dyes, on the other hand, the rejection factor increases with the number of sulfone groups. The granules obtained in the experiment can be successfully used to remove cationic dyes, achieving high rejection values (~100%), most quickly and efficiently removing dyes containing one such group (toluidine blue). In the case of anionic dyes, the highest rejection values (~80%) were obtained for methyl blue, which has three sulfone groups.
Słowa kluczowe
Rocznik
Strony
294--307
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2 43-309 Bielsko-Biala, Poland
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2 43-309 Bielsko-Biala, Poland
Bibliografia
  • 1. Abka Khajouei R.; Tounsi L.; Shahabi N.; Patel A.K.; Abdelkafi S.; Michaud P. (2022). Structures, Properties and Applications of Alginates. Marine Drugs, 20(6), 364.
  • 2. Ahmed S., Choudhury T. R., Alam M. Z., Nurnabi M. (2024). Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr3+, Cu2+ and Cd2+ ions from tannery effluents. Cleaner Water, 1, 100016.
  • 3. Arshad F., Selvaraj M., Banat F., Abu Haija M. (2020). Removal of metal ions and organics from real refinery wastewater using double- functionalized graphene oxide in alginate beads. Journal of Water Process Engineering, 38, 101635.
  • 4. Chen Y., Liu X., Zhou R., Qiao J., Liu J., Cai R., Liu J., Rong J., Chen Y. (2024). Porous sodium alginate/cellulose nanofiber composite hydrogel microspheres for heavy metal removal in wastewater. International Journal of Biological Macromolecules, 278, 135000.
  • 5. Fei Y., Li Y., Han S., Ma J. 2016. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. Journal of Colloid and Interface Science, 484, 196–204.
  • 6. Fernández-Sainz J., Herrera-Ochoa D., Pacheco- Liñán P. J., Darde, M., Albaladejo J., Bravo I., Garzón-Ruiz A. (2024). Spectroscopic study on volasertib: Highly stable complexes with albumin and encapsulation into alginate/montmorillonite bionanocomposites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 322.
  • 7. Fernando I. P. S., Lee W. W., Han E. J., Ahn G. (2020). Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal, 391, 123823.
  • 8. Fryczkowska B. (2018). The application of ultrafiltration composite GO / PAN membranes for removing dyes from textile wastewater. Desalination and Water Treatment 128, 79–88.
  • 9. Gürses A., Açıkyıldız M., Güneş K., Gürses M. S. (2016). Dyes and pigments. Springer Nature.
  • 10. Hayat H., Mahmood Q., Pervez A., Bhatti Z. A., Baig S. A. (2015). Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 154, 149–153.
  • 11. Holkar C. R., Jadhav A. J., Pinjari D. V., Mahamuni N. M., Pandit A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366.
  • 12. Hwang T., Oh J.-S., Yim W., Nam J.-D., Bae C., Kim H.-I., Kim K. J. (2016). Ultrafiltration using graphene oxide surface-embedded polysulfone membranes. Separation and Purification Technology, 166, 41–47.
  • 13. Li H., Zhu X., Zhao J., Ling G., Zhang P. (2024). Emerging adsorbents: Applications of sodium alginate/graphene oxide composite materials in wastewater treatment, 59, 105100.
  • 14. Li Z., Xie W., Zhang Z., Wei S., Chen J., Li Z. (2023). Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water. International Journal of Biological Macromolecules, 245, 125524.
  • 15. Ma J., Zhang M., Ji M., Zhang L., Qin Z., Zhang Y., Gao L., Jiao T. (2021). Magnetic graphene oxide-containing chitosan sodium alginate hydrogel beads for highly efficient and sustainable removal of cationic dyes. International Journal of Biological Macromolecules, 193, 2221–2231.
  • 16. McMurry J. (2017). Chemia organiczna. Wydawnictwo Naukowe PWN.
  • 17. Mohammed C., Lalgee L., Kistow M., Jalsa N., Ward K. (2022). On the binding affinity and thermodynamics of sodium alginate-heavy metal ion interactions for efficient adsorption. Carbohydrate Polymer Technologies and Applications, 3, 100203.
  • 18. Ong Y. K., Li F. Y., Sun S. P., Zhao B. W., Liang C. Z., Chung T. S. (2014). Nanofiltration hollow fiber membranes for textile wastewater treatment: Lab-scale and pilot-scale studies. Chemical Engineering Science, 114, 51–57.
  • 19. Platero E., Fernandez M. E., Bonelli P. R., Cukierman A. L. (2017). Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance. Journal of Colloid and Interface Science, 491, 1–12.
  • 20. Raksaman S., Kloysuwan C., Khrueakham A., Sairiam S. (2024). Effect of spunbond nonwoven microplastics on dye wastewater treatment via hydrogen peroxide–based catalyst–assisted advanced oxidation processes. Environmental Advances, 17, 100567.
  • 21. Reddy Obireddy S., Bellala S., ChinthaM., Sake, A., Marata Chinna Subbarao S., Lai W. F. 2023. Synthesis and properties of alginate-based nanoparticles incorporated with different inorganic nanoparticulate modifiers for enhanced encapsulation and controlled release of favipiravir. Arabian Journal of Chemistry, 16(7), 104751.
  • 22. Singh R. K., Kumar R., Singh D. P. (2016). Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Advances, 6(69), 64993–65011.
  • 23. Sirajudheen P., Karthikeyan P., Vigneshwaran S., Meenakshi S. (2021). Complex interior and surface modified alginate reinforced reduced graphene oxide-hydroxyapatite hybrids: Removal of toxic azo dyes from the aqueous solution. International Journal of Biological Macromolecules, 175, 361–371.
  • 24. Smith A. T., LaChance A. M., Zeng S., Liu B., Sun L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47.
  • 25. Such A., Wisła-Świder A., Węsierska E., Nowak E., Szatkowski P., Kopcińska J., Koronowicz A. (2023). Edible chitosan-alginate based coatings enriched with turmeric and oregano additives: Formulation, antimicrobial and non-cytotoxic properties. Food Chemistry, 426, 136662.
  • 26. Tang L., Mei J., Hua Z., Fu J. (2024). Self-assembled sodium alginate/graphene hydrogel enhances sulfamethoxazole removal: Impacts of hydrogel properties on the microbial community. Surfaces and Interfaces, 51(99), 104751.
  • 27. Tao S., Lu L., Zhou T., Zhang Y., Guo Y. (2024). Design of recoverable biochar/alginate gel and its removal performance for Pb(II) in water: Simulation and experiment. Journal of Molecular Liquids, 405.
  • 28. Tiwari H., Tripathi P., Sonwani R. K., Singh R. S. (2023). A synergistic approach combining Adsorption and Biodegradation for effective treatment of Acid Blue 113 dye by Klebsiella grimontii entrapped Graphene Oxide-Calcium Alginate Hydrogel Beads. Bioresource Technology, 387, 129614.
  • 29. Wang M., Li Y., Cui M., Li M., Xu W., Li L., Sun Y., Chen B., Chen K., Zhang Y. (2022). Barium alginate as a skeleton coating graphene oxide and bentonite-derived composites: Excellent adsorbent based on predictive design for the enhanced adsorption of methylene blue. Journal of Colloid and Interface Science, 611, 629–643.
  • 30. Ye C. C., Zhao F. Y., Wu J. K., Weng X. D., Zheng P. Y., Mi Y. F., An Q. F., Gao C. J. (2017). Sulfated polyelectrolyte complex nanoparticles structured nanoflitration membrane for dye desalination. Chemical Engineering Journal, 307, 526–536.
  • 31. Zha L., Aachmann F. L., Sletta H., Arlov Ø., Zhou Q. (2024). Cellulose nanofibrils/alginates double-network composites: effects of interfibrillar interaction and G/M ratio of alginates on mechanical performance. Biomacromolecules.
  • 32. Zhang H., Han X., Liu J., Wang M., Zhao T., Kang L., Zhong S., Cui X. (2022). Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129736.
  • 33. Zhao K., Chen M., Zhang Y., Miao J., Jiang J., Xie W., Yang Z., Lin L., Zhang W., Chu R., Shi W., Hu Y. (2022). Anti-fouling and anti-bacterial graphene oxide/calcium alginate hybrid hydrogel membrane for efficient dye/salt separation. Desalination, 538, 115908.
  • 34. Zhu J., Tian M., Zhang Y., Zhang H., Liu J. (2015). Fabrication of a novel “loose” nanofiltration membrane by facile blending with Chitosan-Montmorillonite nanosheets for dyes purification. Chemical Engineering Journal, 265, 184–193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a0a0fb-5fbb-4eba-88eb-0ccc2ac0272b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.