Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aims to optimize the efficiency and costs of drilling steel in sandstone and granodiorite rocks using machine learning techniques in a Peruvian mine. Predictive models, including random forest (RF), XGBoost (XGB), decision trees (DT), and artificial neural networks (ANN), were applied, along with optimization algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and simulated annealing (SA). A dataset of 705 entries was analyzed, focusing on drill bit wear, percussion and rotation pressures, and cost per meter drilled. Model performance was evaluated using R2, RMSE, MAE, and MAPE. The ANN model demonstrated the highest accuracy, with an R2 of 0.64, RMSE of 0.05 and MAE of 0.04, for efficiency, and an R2 of 0.96, RMSE of 0.03 and MAE of 0.03 for costs. Optimization with PSO offered the best performance, increasing the efficiency of drill steel by 360% in sandstone and 423.33% in granodiorite, with a slight cost increase of 8.82% in sandstone and a cost reduction of 32.71% in granodiorite. In conclusion, machine learning techniques proved effective in optimizing the efficiency and drilling cost in different types of rocks in an underground mine.
Wydawca
Czasopismo
Rocznik
Tom
Strony
393--407
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- National University of Trujillo, Department of Mining Engineering, Peru
autor
- National University of Trujillo, Department of Mining Engineering, Peru
autor
- National University of the Altiplano, Faculty of Chemical Engineering, Peru
autor
- National University of Trujillo, Department of Mining Engineering, Peru
autor
- National University of Trujillo, Department of Mining Engineering, Peru
autor
- National University of the Altiplano, Faculty of Chemical Engineering, Peru
autor
- National University of Juliaca, Faculty of Industrial Process Engineering, Peru
autor
- National University of Juliaca, Faculty of Industrial Process Engineering, Peru
Bibliografia
- [1] Siva Prasad B, Murthy V, Naik S. Compendious Index for Drillability: a rapid tool to assess drill penetration rate and bit life for rock engineering applications. Bull. Eng. Geol. Environ. 2023;82:79. https://doi.org/10.1007/s10064-023-03081-y.
- [2] Li Y. Research on the matching of impact performance and collision coefficient of hydraulic rock drill. Shock Vib. 2021; 2021. https://doi.org/10.1155/2021/6651860.
- [3] Long R, Sun S, Lian Z. Research on the hard-rock breaking mechanism of hydraulic drilling impact tunneling. Math. Probl Eng. 2015;2015. https://doi.org/10.1155/2015/153648.
- [4] Ma W, Geng X, Jia C, Gao L, Liu Y, Tian X. Percussion characteristic analysis for hydraulic rock drill with no constant-pressurized chamber through numerical simulation and experiment. Adv. Mech. Eng. 2019;11. https://doi.org/ 10.1177/1687814019841486.
- [5] Siva Prasad B, Murthy V, Naik S. Influence of static and dynamic rock properties on drillability prognosis for mining and tunnelling projects. Indian Geotech. J. 2022;52:765e79. https://doi.org/10.1007/s40098-022-00608-0.
- [6] Diaz MB, Kim KY, Kang TH, Shin HS. Drilling data from an enhanced geothermal project and its pre-processing for ROP forecasting improvement. Geothermics 2018;72. https:// doi.org/10.1016/j.geothermics.2017.12.007.
- [7] Rostamsowlat I, Evans B, Kwon HJ. A review of the frictional contact in rock cutting with a PDC bit. J. Pet. Sci. Eng. 2022; 208. https://doi.org/10.1016/j.petrol.2021.109665.
- [8] Gerbaud L, Menand S, Sellami H. PDC bits: all comes from the cutter/rock interaction. In: SPE/IADC Drilling Conference, Proceedings; 2006. https://doi.org/10.2523/98988-ms.
- [9] Liu W, Zhu X, Lv YX, Tong H. On the mechanism of thermally induced micro-cracking assisted rock cutting in hard formation. J. Pet. Sci. Eng. 2021;196. https://doi.org/10.1016/ j.petrol.2020.107666.
- [10] Siva Prasad B, Murthy V, Naik S. Challenges in drill equipment selection vis-a-vis underground excavations e a methodology. proceedings of geotechnical challenges in mining, tunneling and underground infrastructures. ICGMTU 2021. Lecture Notes in Civil Engineering 2022;228. https://doi.org/10.1007/978-981-16-9770-8_9.
- [11] Boukredera FS, Youcefi MR, Hadjadj A, Ezenkwu CP, Vaziri V, Aphale SS. Enhancing the drilling efficiency through the application of machine learning and optimization algorithm. Eng. Appl. Artif. Intell. 2023;126. https:// doi.org/10.1016/j.engappai.2023.107035.
- [12] Seo J, Noh DK, Lee GH, Jang JS. A percussion performance analysis for rock-drill drifter through simulation modeling and experimental validation. Int. J. Precis. Eng. Manuf. 2016; 17. https://doi.org/10.1007/s12541-016-0021-0.
- [13] Giuffrida A, Laforgia D. Modelling and simulation of a hydraulic breaker. Int. J. Fluid Power 2005;6. https://doi.org/ 10.1080/14399776.2005.10781219.
- [14] Song C, Chung J, Kim JH, Oh JY. Design optimization of a drifter using the Taguchi method for efficient percussion drilling. J. Mech. Sci. Technol. 2017;31. https://doi.org/ 10.1007/s12206-017-0327-6.
- [15] Siva Prasad B, Murthy V. Laboratory investigations into fracture propagation characteristics of rock material. AIP Conf. Proc. 2018; 1946. https://doi.org/10.1063/1.5030313.
- [16] Siva Prasad B, Murthy V, Naik S. Drillability predictions in Aravalli and Himalayan rocks e a petro-physico-mechanical approach. Curr. Sci. 2022;122:8. https://doi.org/10.18520/cs/ v122/i8/907-917.
- [17] Hegde C, Gray KE. Use of machine learning and data analytics to increase drilling efficiency for nearby wells. J. Nat. Gas Sci. Eng. 2017;40. https://doi.org/10.1016/j.jngse.2017. 02.019.
- [18] Zhang G, Konietzky H, Fruhwirt T. Experimental investigation of abrasive potential and drilling efficiency at elevated temperatures via Cerchar rock scratching. Geomech. Geophy. Geo-Energy Geo-Res. 2024;10:120. https://doi.org/ 10.1007/s40948-024-00831-4.
- [19] Rezaei A, Ayatollahi S, Khosravi V, Malmir P. Enhancing drilling efficiency: an experimental study on additives for mud loss mitigation in fractured media. Geoenergy Sci. Eng. 2024;241:213199. https://doi.org/10.1016/j.geoen.2024.213199.
- [20] Prasad Siva B. Development of micro macro scale drillability prognosis models and drill selection methodology for mining and tunnelling applications. Dhanbad: Indian Institute of Technology (ISM); 2022. Thesis PhD, http://hdl.handle.net/ 10603/440326.
- [21] Jia C, Zhang J, Kong X, Xu H, Jiang W, Li S, et al. Prediction of drilling efficiency for rotary drilling rig based on an improved back propagation neural network algorithm. Machines 2024; 12:438. https://doi.org/10.3390/machines12070438.
- [22] Fattahi H, Ghaedi H. Enhancing rock drilling efficiency: a comparative analysis of DRI estimation models using the RES approach. Indian Geotech. J. 2023. https://doi.org/ 10.1007/s40098-023-00819-z.
- [23] Zahoor S, Ehsan S, Raza SF, Khan AQ, Anwar S, Ali A. Investigating drilling efficiency: a study on indexable centerless drilling of Ti-6Al-4 V alloy. Int. J. Adv. Des. Manuf. Technol. 2024;133:2157e69. https://doi.org/10.1007/s00170-024-13760-z.
- [24] Karpov VN, Timonin VV, Konurin AI, Chernienkov EM. Improvement of drilling efficiency in underground mines in Russia. IOP Conf. Ser. Earth Environ. Sci. 2019;262. https:// doi.org/10.1088/1755-1315/262/1/012024.
- [25] Park J, Kim K. Use of drilling performance to improve rockbreakage efficiencies: a part of mine-to-mill optimization studies in a hard-rock mine. Int. J. Min. Sci. Technol. 2020;30. https://doi.org/10.1016/j.ijmst.2019.12.021.
- [26] Adebayo B, Taiwo BO, Afeni TB, Aderoju RO, Faluyi JO. Improvement of drill bit-button performance and efficiency during drilling: an application of LSTM model to Nigeria southwest mines. Journal of Mining and Environment 2023; 14. https://doi.org/10.22044/jme.2023.13068.2372.
- [27] Qishuai Y, Jin Y, Bo Z, Menglei J, Xiaoliang C, Chao F, et al. Improve the drilling operations efficiency by the big data mining of real-time logging. In: Proceedings of the SPE/ IADC Middle East Drilling Technology Conference and Exhibition, 2018; 2018. https://doi.org/10.2118/189330-ms. January.
- [28] Tortrakul N, Pochan C, Southland S, Mala P, Pichaichanlert T, Tangsawanich Y. Drilling performance improvement through use of artificial intelligence in bit and bottom hole assembly selection in gulf of Thailand. In: Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, APDT; 2021. https://doi.org/10.2118/201079-ms.
- [29] Rashidi B, Hareland G, Tahmeen M, Anisimov M, Abdorazakov S. Real-time Bit Wear Optimization Using the Intelligent Drilling Advisory System. Society of Petroleum Engineers - SPE Russian Oil and Gas Technical Conference and Exhibition 2010, 1; 2010. https://doi.org/10.2118/136006-ms. RO and G 10.
- [30] Abbas AK, Assi AH, Abbas H, Almubarak H, Al Saba M. Drill bit selection optimization based on rate of penetration: application of artificial neural networks and genetic algorithms. Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2019. 2019. https://doi.org/10.2118/197241-ms. ADIP 2019.
- [31] Nautiyal A, Mishra AK. Machine learning application in enhancing drilling performance. Procedia Comput. Sci. 2022; 218. https://doi.org/10.1016/j.procs.2023.01.068.
- [32] Yang Z, Liu Y, Qin X, Dou Z, Yang G, LvJ, et al. Optimization of drilling parameters of target wells based on machine learning and data analysis. Arabian J. Sci. Eng. 2023;48. https://doi.org/10.1007/s13369-022-07103-x.
- [33] Kalhori H, Bagherpour R, Tudeshki H. Wear prediction of rock drill bits based on geomechanical properties of rocks. Arabian J. Sci. Eng. 2024;49. https://doi.org/10.1007/s13369-023-08598-8.
- [34] Sun J, Zhang R, Chen M, Chen B, Wang X, Li Q, et al. Identification of porosity and permeability while drilling based on machine learning. Arabian J. Sci. Eng. 2021;46. https://doi.org/10.1007/s13369-021-05432-x.
- [35] Ahmed A, Elkatatny S, Gamal H, Abdulraheem A. Artificial intelligence models for real-time bulk density prediction of vertical complex lithology using the drilling parameters. Arabian J. Sci. Eng. 2022;47. https://doi.org/10.1007/s13369-021-05537-3.
- [36] Kazemi MMK, Nabavi Z, Armaghani DJ. A novel hybrid XGBoost methodology in predicting penetration rate of rotary based on rock-mass and material properties. Arabian J. Sci. Eng. 2024;49. https://doi.org/10.1007/s13369-023-08360-0.
- [37] Kavzoglu T, Teke A. Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arabian J. Sci. Eng. 2022;47. https://doi.org/10.1007/s13369-022-06560-8.
- [38] Akhlaghi MA, Bagherpour R, Hoseinie SH. Real-time prediction of disc cutter wear in low-abrasive rocks: integrating physico-mechanical properties and signal processing features through machine learning methods. Arabian J. Sci. Eng. 2024. https://doi.org/10.1007/s13369-024-09321-x.
- [39] Balakrishnan K, Mani I, Sankaran D. Predicting the overall equipment efficiency of core drill rigs in mining using ANN and improving it using MCDM. Eksploatacja i Nieza-wodnosc 2023;25. https://doi.org/10.17531/ein/169581.
- [40] Al-AbdulJabbar A, Mahmoud AA, Elkatatny S, Abughaban M. Artificial neural networks-based correlation for evaluating the rate of penetration in a vertical carbonate formation for an entire oil field. J. Pet. Sci. Eng. 2022;208. https://doi.org/10.1016/j.petrol.2021.109693.
- [41] Marquina J, Cotrina M, Mamani J, Noriega E, Vega J, Cruz J. Copper ore grade prediction using machine learning techniques in a copper deposit. JME (J. Med. Ethics) 2024;15: 1011e27. https://doi.org/10.22044/jme.2024.14032.2617.
- [42] Cotrina M, Marquina J, Mamani J, Arango S, Gonzalez J, Ccatamayo J, et al. Predictive model using machine learning to determine fuel consumption in CAT-777F mining equipment. Int. J. Min. Miner. Eng. 2024;15:147e60. https://doi.org/ 10.1504/IJMME.2024.140073.
- [43] Efkolidis N, Markopoulos A, Karkalos N, Hernandez CG, Talon JLH, Kyratsis P. Optimizing models for sustainable drilling operations using genetic algorithm for the optimum ANN. Appl. Artif. Intell. 2019;33. https://doi.org/10.1080/ 08839514.2019.1646014.
- [44] Soltani S, Hezarkhani A, Erhan Tercan A, Karimi B. Use of genetic algorithm in optimally locating additional drill holes. J. Min. Sci. 2011;47. https://doi.org/10.1134/S1062739147010084.
- [45] Kumral M, Ozer U. Planning additional drilling campaign using two-space genetic algorithm: a game theoretical approach. Comput. Geosci. 2013;52. https://doi.org/10.1016/ j.cageo.2012.09.020.
- [46] Bui X-N, Lee C, Nguyen H, Bui H-B, Long N, Le Q-T, et al. Estimating PM10 concentration from drilling operations in open-pit mines using an assembly of SVR and PSO. Appl. Sci. 2019;9:2806. https://doi.org/10.3390/app9142806.
- [47] Zainal Abidin NW, Mohd Fadzil MFF, Nik Mohamed NMZ. Optimization of multi-holes drilling path using particle swarm optimization. Lecture Notes in Mech. Eng. 2018;0. https://doi.org/10.1007/978-981-10-8788-2_10.
- [48] Fan D, Zhang N. Research on construction system of crawler drilling rig based on HC-ACO algorithm. IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2021. ITNEC; 2021. https://doi.org/10.1109/ ITNEC52019.2021.9587046.
- [49] Danish AAK, Khan A, Muhammad K, Ahmad W, Salman S. A simulated annealing based approach for open pit mine production scheduling with stockpiling option. Resour. Policy 2021;71. https://doi.org/10.1016/j.resourpol.2021.102016.
- [50] Bakhshandeh Amnieh H, Bidgoli MH, Mokhtari H, Bazzazi AA. Application of simulated annealing for optimization of blasting costs due to air overpressure constraints in open-pit mines. J. Mining Environ. 2019;10. https://doi.org/ 10.22044/jme.2019.8084.1675.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32a024bf-4c4e-488b-9429-d8dacad40402
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.