PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulations of epitaxial growth in MOVPE reactor as a tool for aluminum nitride growth optimization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study concerns numerical simulations and experimental measurements on the influence of inlet gas mass flow rate on the growth rate of aluminum nitride crystals in Metalorganic Vapor Phase Epitaxy reactor model AIX-200/4RF-S. The aim of this study was to design the optimal process conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions relating to crystal growth such as temperature, pressure, gas composition and reactor geometry, it is difficult to design an optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. Since it is impossible to experimentally determine the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to gain insight into the process conditions. Numerical simulations increase the understanding of the epitaxial process by calculating heat and mass transfer distribution during the growth of aluminum nitride crystals. Including chemical reactions in the numerical model enables the growth rate of the substrate to be calculated. The present approach has been applied to optimize homogeneity of AlN film thickness and its growth rate.
Rocznik
Strony
110--114
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] N. G. Wright, A. B. Horsfall, K. Vassilevski, Prospects for SiC electronics and sensors, Materials Today 11 (2008) 16 – 21, doi:10.1016/S1369-7021(07)70348-6.
  • [2] P. Caban, W. Strupinski, J. Szmidt, M. Wojcik, J. Gaca, O. Kelekci, D. Caliskan, E. Ozbay, Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4HSiC, Journal of Crystal Growth 315 (1) (2011) 168 – 173, doi: 10.1016/j.jcrysgro.2010.09.058.
  • [3] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. GrA˘ L’neis, D. Haberer, R. Bozek, J. Krupka, J. M. Baranowski, Graphene Epitaxy by Chemical Vapor Deposition on SiC, Nano Letters 11 (4) (2011) 1786–1791, doi:10.1021/nl200390e.
  • [4] S. Karpov, Advances in the modeling of MOVPE processes, Journal of Crystal Growth 248 (2003) 1 – 7, doi:10.1016/S0022-0248(02)01838-9.
  • [5] J. Skibinski, P. Caban, A. K. Lewandowska, T. Wejrzanowski, K. J. Kurzydlowski, Numerical simulations of heat and mass transfer in the MOVPE process for obtaining high-quality nitride-based semiconductors, WIT Transactions on Modelling and Simulation 59 (2015) 433–440, doi:10.2495/CMEM150391.
  • [6] T. Wejrzanowski, J. Skibinski, A. K. Lewandowska, K. J. Kurzydlowski, Modeling Of Heat And Mass Transfer In An SiC CVD Reactor As A Tool To Design Modern Materials For High Power Electronics Applications, WIT Transactions on Engineering Sciences 91 (2015) 213–220, doi:10.2495/SECM150191.
  • [7] S. A. Safvi, J. M. Redwing, M. A. Tischler, T. F. Kuech, GaN Growth by Metallorganic Vapor Phase Epitaxy: A Comparison of Modeling and Experimental Measurements, Journal of The Electrochemical Society 144 (5) (1997) 1789–1796, doi:10.1149/1.1837681.
  • [8] E. Yakovlev, R. Talalaev, Y. Makarov, B. Yavich, W. Wang, Deposition behavior of GaN in AIX 200/4 RF-S horizontal reactor, Journal of Crystal Growth 261 (2004) 182 – 189, doi:10.1016/j.jcrysgro.2003.11.010.
  • [9] J. Skibinski, T. Wejrzanowski, D. Teklinska, K. J. Kurzydlowski, Influence of hydrogen volumetric flow rate on temperature distribution in CVD reactor based on epi-growth of SiC, Journal of Power Technologies 95 (2) (2015) 119–125.
  • [10] R. Pawlowski, C. Theodoropoulos, A. Salinger, T. Mountziaris, H. Moffat, J. Shadid, E. Thrush, Fundamental models of the metalorganic vapor-phase epitaxy of gallium nitride and their use in reactor design, Journal of Crystal Growth 221 (2000) 622 – 628, doi:10.1016/S0022-0248(00)00789-2.
  • [11] M. Dauelsberg, H. Hardtdegen, L. Kadinski, A. Kaluza, P. Kaufmann, Modeling and experimental verification of deposition behavior during AlGaAs growth: a comparison for the carrier gases N2 and H2, Journal of Crystal Growth 223 (2001) 21 – 28, doi:10.1016/S0022-0248(00)00970-2.
  • [12] H. Hardtdegen, A. Kaluza, D. Gauer, M. Ahe, M. Grimm, P. Kaufmann, L. Kadinski, On the influence of gas inlet configuration with respect to homogeneity in a horizontal single wafer MOVPE reactor, Journal of Crystal Growth 223 (2001) 15 – 20, doi:10.1016/S0022-0248(00)00969-6.
  • [13] C. S. Kim, J. Hong, J. Shim, B. J. Kim, H.-H. Kim, S. D. Yoo, W. S. Lee, Numerical and Experimental Study on Metal Organic Vapor-Phase Epitaxy of InGaN/GaN Multi-Quantum-Wells, Journal of Fluids Engineering 130 (8) (2008) 081601–081601, doi:10.1115/1.2956513.
  • [14] M.Dauelsberg, L.Kandinski, Yu.N.Makarov, E.Woelk, G.Strauch, D.Schmitz, H.Juergensen, GaN-MOVPE: correlation between computer modelling and experimental data, Institute of Physics Conference Series 142 (887).
  • [15] J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski, Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics, AIP Conference Proceedings 1618 (1) (2014) 859–862, doi:10.1063/1.4897867.
  • [16] M. Dutka, M. Ditaranto, T. Løvås, Emission characteristics of a novel low NOx burner fueled by hydrogen-rich mixtures with methane, Journal of Power Technologies 95 (2) (2015) 105.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-329c47c9-33da-405e-9d74-d67db98056a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.