Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Atmospheric ammonia (NH3) is a well-known contributor to secondary particle formation and can lead to severe environmental degradation and human health outcomes. In the context of the very limited knowledge about updated data on NH3 levels in urban areas, this paper presents the results of a one-year (Apr 2023–Mar 2024) measurement campaign of NH3 concentrations conducted at the urban background site in Zabrze, located in the central part of the Upper Silesian Industrial District (USID) (southern Poland), which could be considered one of the European hotspots. The research was performed using an automatic ammonia analyzer Model T201 by Teledyne API, which provides data on the levels of NH3 and other gaseous nitrogen compounds (NO (nitrogen oxide), NO2 (nitrogen dioxide), NOx (nitrogen oxides)) at hourly time resolution. Consequently, this enabled an analysis of specific temporal variations of NH3 concentrations, and therefore allowed the identification of its possible emission sources and insight into processes involving ammonia. The results obtained in this study revealed that ammonia stood out from nitrogen oxides and other atmospheric pollutants – with high NH3 concentrations recorded during spring and summer, which is related to the high intensity of gaseous NH3 formation under warm meteorological conditions. A different situation was observed in the hourly NH3 concentration distribution scheme, which was manifested by much less visible diurnal variations of NH3 levels, with no characteristic morning maximum, as well as the occurrence of a broad afternoon maximum in the summer. In summary, anthropogenic sources had a significant impact on NH3 concentrations in the area under consideration, with a greater role of traffic in the case of NOx, and a biomass and fossil fuel combustion and/or industrial sources – for NH3. Local meteorological conditions also had a notable influence on NH3 levels, of which air temperature (positive correlation) and wind speed (negative correlation) were found to be the most important. The ongoing research is planned to be continued, as it can provide valuable scientific data for the development of air quality protection strategies and programmes in urban areas, especially in the field of reducing emissions of gaseous precursors of particulate matter.
Wydawca
Rocznik
Tom
Strony
7--23
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland
Bibliografia
- 1. Artíñano, B., Pujadas, M., Alonso-Blanco, E., Becerril-Valle, M., Coz, E., Gómez-Moreno, F.J., Salvador, P., Nuñez, L., Palacios, M., Diaz, E., (2018). Real-time monitoring of atmospheric ammonia during a pollution episode in Madrid (Spain). Atmospheric Environment, 189, pp. 80–88. https://doi.org/10.1016/j.atmosenv.2018.06.037
- 2. Błaszczak, B., Mathews, B., Słaby, K., Klejnowski, K., (2023). Distribution of EC and OC temperature fractions in different research materials. Archives of Environmental Protection 49(02), pp. 95–203. https://doi.org/10.24425/aep.2023.145901
- 3. Cao, J.-J., Zhu, C.-S., Chow, J.C., Watson, J.G., Han, Y.-M., Wang, G.-H., Shen, Z.-X., An, Z.-S., (2009). Black carbon relationships with emissions and meteorology in Xi`an, China. Atmospheric Research, 94, 194–202. https://doi.org/10.1016/j.atmosres.2009.05.009
- 4. Chief Inspectorate for Environmental Protection, Air quality portal, https://powietrze.gios.gov.pl/pjp/current). [26. 08.2024]
- 5. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe, https://eur-lex.europa.eu/eli/dir/2008/50/oj). [23.08.2024]
- 6. Erisman, J.W., Galloway, J.N., Seitzinger, S., Bleeker, A., Dise, N.B., Petrescu, R., Leach, A.M., de Vries, W., (2013). Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of The Royal Society, 368, 20130116. https://doi.org/10.1098/rstb.2013.0116
- 7. European Environment Agency. European Union emission inventory report 1990–2021 — Under the UNECE Convention on Longrange Transboundary Air Pollution (Air Convention). EEA Report 04/2023. Luxembourg: Publications Office of the European Union, 2023. https://www.eea.europa.eu/publications/european-union-emissions-inventory-report-1990-2021). [03.10.2024]
- 8. Ghavam, S., Taylor, C.M., Styring, P., (2021). Modeling and Simulation of a Novel Sustainable Ammonia Production Process From Food Waste and Brown Water. Frontiers in Energy Research, 9, 600071. https://doi.org/10.3389/fenrg.2021.600071
- 9. Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Rantica, E., Ancora, M.P., Hu, M., Zhu, T., (2010). Occurrence of gas phase ammonia in the area of Beijing (China). Atmospheric Chemistry and Physics, 10, pp. 9487–9503. https://doi.org/10.5194/acp-10-9487-2010
- 10. Kubota, T., Kuroda, H., Watanabe, M., Takahashi, A., Nakazato, R., Tarui, M., Matsumoto, S., Nakagawa, K., Numata, Y., Ouchi, T., Hosoi, H., Nakagawa, M., Shinohara, R., Kajino, M., Fukushima, K., Igarashi, Y., Imamura, N., Katata, G., (2020). Role of advection in atmospheric ammonia: A case study at a Japanese lake basin influenced by agricultural ammonia sources. Atmospheric Environment, 243, 117856. https://doi.org/10.1016/j.atmosenv.2020.117856
- 11. Kuttippurath, J., Singh, A., Dash, S.P., Mallick, N., Clerbaux, C., Van Damme, M., Clarisse, L., Coheur, P.-F., Raj, S., Abbhishek, K., Varikoden, H., (2020). Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Science of the Total Environment, 740, 139986. https://doi.org/10.1016/j.scitotenv.2020.139986
- 12. Larios, A.D., Chebana, F., Godbout, S., Brar, S.K., Valera, F., Palacios, J.H., Ramirez, A.A., Saldoval-Salas, F., Larouche, J.P., Medina-Hernández, D., Potvin, L., (2018). Analysis of atmospheric ammonia concentration from four sites in Quebec City region over 2010–2013. Atmospheric Pollution Research, 9, 476–482. https://doi.org/10.1016/j.apr.2017.11.001
- 13. Lonati, G., Cernuschi, S., (2020). Temporal and spatial variability of atmospheric ammonia in the Lombardy region (Northern Italy). Atmospheric Pollution Research, 11(12), pp. 2154–2163. https://doi.org/10.1016/j.apr.2020.06.004
- 14. Nair, A.A., Yu, F., (2020). Quantification of Atmospheric Ammonia Concentrations: A Review of Its Measurement and Modeling. Atmosphere, 11(10), 1092. https://doi.ord/10.3390/atmos11101092
- 15. Osada, K., (2020). Measurement report: Short-term variation in Ammonia concentrations in an urban area increased by mist evaporation and emissions from a forest canopy with bird droppings. Atmospheric Chemistry and Physics, 20, pp. 11941–11954. https://doi.org/10.5194/acp-20-11941-2020
- 16. Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Zhang, Q., Zheng, B., Michalski, G., Wang, Y., (2016). Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium. Environmental Science & Technology, 50, pp. 8049–8056. https://doi.org/10.1021/acs.est.6b00634
- 17. Pan, Y., Gu, M., Song, L., Tian, S., Wu, D., Walters, W.W., Yu, X., Lü, X., Ni, X., Wang, Y., Cao, J., Liu, X., Fang, Y., Wang, Y., (2020). Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia. Atmospheric Research, 243, 105018. https://doi.org/10.1016/j.atmosres.2020.105018
- 18. Petrus, M., Popa, C., Bratu, A.-M., (2022). Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector. Materials (Basel), 15(9), 3182. https://doi.org/10.3390/ma15093182
- 19. Phan, N.-T., Kim, K.-H., Shon, Z.-H., Jeaon, E.-C., Jung, K., Kim, N.-J., (2013). Analysis of ammonia variation in the urban atmosphere. Atmospheric Environment, 65, 177–185. https://doi.org/10.1016/j.atmosenv.2012.10.049
- 20. Reche, C., Pérez, N., Alastuey, A., Cots, N., Pérez, E., Querol, X., (2022). 2011–2022 trends of urban and regional ammonia in and around Barcelona, NE Spain. Chemosphere, 304, 135347. https://doi.org/10.1016/j.chemosphere.2022.135347
- 21. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Ośródka, L., Krajny, E., Błaszczak, B., Mathews, B., (2014). Spatial and seasonal variability of the mass concentrations and chemical composition of PM2.5 in Poland. Air Quality, Atmosphere & Health, 7, pp. 41–58. https://doi.org/10.1007/s11869-013-0222-y
- 22. Tournadre, B., Chelin, P., Ray, M., Cuesta, J., Kutzner, R.D., Landsheere, X., Fortems-Cheiney, A., Flaud, J.-M., Hase, F., Blumenstock, T., Orphal, J., Viatte, C., Camy-Peyret, C., (2020). Atmospheric ammonia (NH3) over the Paris megacity: 9 years of total column observations from ground-based infrared remote sensing. Atmospheric Measurement Techniques, 13, pp. 3923–3937. https://doi.org/10.5194/amt-13-3923-2020
- 23. Viatte, C., Petit, J.-E., Yamanouchi, S., Van Damme, M., Doucerain, C., Germain-Piaulenne, E., Gros, V., Favez, O., Clarisse, L., Coheur, P.-F., Strong, K., Clerbaux, C., (2021). Ammonia and PM2.5 Air Pollution in Paris during the 2020 COVID Lockdown. Atmosphere, 12(2), 160. https://doi.org/10.3390/atmos12020160.
- 24. Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez, A., Zhou, B., (2015). Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Scientific Reports, 5, 15842. https://doi.org/10.1038/srep15842
- 25. Zioła, N., Błaszczak, B., Klejnowski, K., (2021). Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere, 12(1), 119. https://doi.org/10.3390/atmos12010119
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3290cd41-8b0a-4326-8bfe-9ff37ff50c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.