PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interaction of the Kinetic Energy Penetrators and Steel and Composite Armours

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents numerical simulations of APFSDS projectile impact on thick, semi-infinite, oblique steel armours. The aim of the study was to analyse the defeat mechanisms provided by different types of armours against segmented kinetic projectiles. Additionally, the penetration capability of the projectile made of heavy tungsten alloy was evaluated by numerical simulations. The outcomes of the simulations were compared to the experimental observations in order to validate the numerical model. Then, the verified model was used in the analysis of the protection capability of different types of armours containing layers made of RHA steel, alumina ceramics and rubber. In this way, the most effective variant of the tank armour was chosen.
Rocznik
Strony
81--91
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • Institute of Non Ferrous Metals, Metal Processing Department
autor
  • Warsaw University of Technology, Faculty of Production Engineering
  • Military Institute of Armament Technology, Ballistics Department
Bibliografia
  • 1. Farrand, T. G. (1995). A model-scale terminal ballistic evaluation of a kinetic energy rod and tube penetrator. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARL-TR-697.
  • 2. Franzen, R. R. and Schneidewind, P. N. (1989). Observations concerning the penetration mechanics of tubular hypervelocity penetrators. Proceedings of the 1989 Hypervelocity Impact Symposium, San Antonio.
  • 3. Holt, C., H., Reaugh, J., E., Kusubov, A. S., Cunningham, B. J., and Clive, C. F. (1990). Extending projectiles: First annual report on work in progress. Lawrence Livermore National Laboratory, Report No. UCRL-ID-103353.
  • 4. Isbel, W. M., Mensa, T. L., and Pace, C. D. (1995). The grc telescopic crossrod penetrator: A new design for the defeat of advanced armors. General Research Corporation Company Proprietary White Paper.
  • 5. Kucher, V. (1981). Multiple impacts on monolithic steel. Proceedings of the Sixth International Symposium on Ballistics.
  • 6. Lo, E. Y., Legner, H. H., Miller, M. G., and G., R. W. (1996). Extending projectile pitch control. Proceedings of the 16th International Symposium on Ballistics.
  • 7. Lynch, N. J., Subramanian, R., and Brissenden, C. (1995). Terminal ballistic performance of novel ke penetrators. Proceedings of the 15th International Symposium on Ballistics.
  • 8. Magier, M. (2010). The conception of the segmented kinetic energy penetrators for tank guns. Journal of Applied Mechanics, 77(5):051802.
  • 9. Magness, L. S. and Frank, K. A. (1993). Split-rod projectile concept. Proceedings of the 1993 Workshop on Kinetic Energy Penetrator Concepts.
  • 10. Orphal, D. and Franzen, R. (1990). Penetration mechanics and performance of segmented rods against metal targets. International Journal of Impact Engineering, 10(1-4):427–438.
  • 11. Rosenberg, Z., Ashuach, Y., Yeshurun, Y., and Dekel, E. (2009). On the main mechanisms for defeating ap projectiles, long rods and shaped charge jets. International Journal of Impact Engineering, 36(4):588–596.
  • 12. Rosenberg, Z. and Dekel, E. (2006). Terminal ballistics. Springer Science+Business Media Singapore.
  • 13. Weinacht, P. and Ferry, E., N. J. (1992). Aerodynamic predictions for extending projectile designs. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Report No. BRL-TR-3350.
  • 14. Wiśniewski, A. (2001). Armour. structure, design and tests. WNT.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-328e5f5a-724e-4199-821d-ec6697d4b497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.