PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Refractive index sensor based on the micromachined side-hole optical fibre

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An intensity-based refractive index (RI) sensor using a laser micromachined side-hole optical fibre (S-H OF) is presented in this paper. To achieve this, a microcavity was cut into a side surface of the S-H OF, providing access to one of the air holes within its structure. The geometrically modified fibre was then connected at both ends to a single-mode fibre for structure investigation in a system containing a supercontinuum laser and an optical signal analyser. In the next step, an immersion liquid was applied to a microcavity for RI values ranging from 1.30 to 1.57 in increments of 0.02. Power loss measurements were conducted for each RI value. Based on the obtained results, it can be concluded that an RI sensor has been successfully developed, which holds potential applications in biochemistry.
Rocznik
Strony
art. no. e153811
Opis fizyczny
Bibliogr. 36 poz., fot., tab., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland
  • Faculty of Electronics and Information Technology, Institute of Electronic Systems, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] Niewczas, M. et al. Technology and research on the influence of liquid crystal cladding doped with magnetic Fe3O4 nanoparticles on light propagation in an optical taper sensor. Adv. Opt. Technol. 13, 1422695 (2024). https://doi.org/10.3389/aot.2024.1422695.
  • [2] Stasiewicz, K. A. et al. The biopolymer active surface for optical fibre sensors. Polymers 16, 2114 (2024). https://doi.org/10.3390/polym16152114.
  • [3] Rao, Y.-J. & Ran, Z.-L. Optic fibre sensors fabricated by laser-micromachining. Opt. Fiber Technol. 19, 808-821 (2013). https://doi.org/10.1016/j.yofte.2013.07.016.
  • [4] Bao, Y., Valipour, M., Meng, W., Khayat, K. H. & Chen, G. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay. Smart Mater. Struct. 26, 085009 (2017). https://doi.org/10.1088/1361-665X/aa71f4.
  • [5] Pisco, M. & Cusano, A. Lab-on-fiber technology: A roadmap toward multifunctional plug and play platforms. Sensors 20, 4705 (2020). https://doi.org/10.3390/s20174705.
  • [6] Abouraddy, A. et al. Towards multimaterial multifunctional fibres that see, hear, sense, and communicate. Nat. Mater. 6, 336-347 (2007). https://doi.org/10.1038/nmat1889.
  • [7] Stasiewicz, K. A., Jakubowska, I., Moś, J., Kosturek, R. & Kowiorski, K. In-line gas sensor based on the optical fiber taper technology with a graphene oxide layer. Electronics 12, 830 (2023). https://doi.org/10.3390/electronics12040830.
  • [8] Pura, P. et al. Polymer microtips at different types of optical fibers as functional elements for sensing applications. J. Light. Technol. 33, 2398-2404 (2015).https://doi.org/10.1109/JLT.2014.2385961.
  • [9] Gasior, K., Martynkien, T., Wojcik, G., Mergo, P. & Urbanczyk, W. D-shape polymer optical fibres for surface plasmon resonance sensing. Opto-Electron. Rev. 24, 209-215 (2017). https://doi.org/10.1016/j.opelre.2017.01.003.
  • [10] Stepniewski, G. et al. From D-shaped to D-shape optical fiber - A universal solution for sensing and biosensing applications: Drawn D-shape fiber and its sensing applications. Measurement 222, 113642 (2023). https://doi.org/10.1016/j.measurement.2023.113642.
  • [11] Wang, Q. et al. Curvature sensor based on D-shape fiber long period fiber grating inscribed and polished by CO2 laser. Measurement 223, 113665 (2023). https://doi.org/10.1016/j.measurement.2023.113665.
  • [12] Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. & López-Higuera, J. M. Optical fibre sensors by direct laser processing: A review. Sensors 20, 6971 (2020). https://doi.org/10.3390/s20236971.
  • [13] Meunier, D. et al. Controlled-chemical etching of the cladding in optical fibers for the design of analytical sensors. Opt. Fiber Technol. 78, 103328 (2023). https://doi.org/10.1016/j.yofte.2023.103328.
  • [14] Mahmud, N. N. H. E. N. et al. Optical trapping using mode-locked fiber laser Au-NP coated side-polished fiber. Sens. Actuators A Phys. 368, 115167 (2024). https://doi.org/10.1016/j.sna.2024.115167.
  • [15] Teng, C. et al. Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature. Opt. Commun. 525, 128844 (2022). https://doi.org/10.1016/j.optcom.2022.128844.
  • [16] Kim, Y.-C., Wei, P., Banerji, S. & Booksh, K. S. Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218-2220 (2005). https://doi.org/10.1364/OL.30.002218.
  • [17] Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluorobutyl acrylate-coated tapered optical fibers. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612.
  • [18] Zhang, Z., Gong, H., Yu, C., Ni, K. & Zhao, C. An optical fiber humidity sensor based on femtosecond laser micromachining Fabry-Perot cavity with composite film. Opt. Laser Technol. 150, 107949 (2022).https://doi.org/10.1016/j.optlastec.2022.107949.
  • [19] Ran, Z., Rao, Z., Zhang, J., Liu, Z. & Xu, B. A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip. J. Light. Technol. 27, 5426-5429 (2009). https://doi.org/10.1109/JLT.2009.2031656.
  • [20] Wang, H. et al. Miniature fiber-optic near-surface gap-coupled cladding waveguide Mach-Zehnder interferometric refractive index sensor inscribed by femtosecond laser. Opt. Laser Technol. 16, 109649 (2023). https://doi.org/10.1016/j.optlastec.2023.109649.
  • [21] Zhao, Y., Zhao, J., Wang, X.-X., Peng Y. & Hu, X.-G. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements. Sens. Actuators B Chem. 353, 131134 (2022). https://doi.org/10.1016/j.snb.2021.131134.
  • [22] García, J. A., Monzón-Hernández, D., Manríquez, J. & Bustos, E. One step method to attach gold nanoparticles onto the surface of an optical fiber used for refractive index sensing. Opt. Mater. 51, 208-212 (2016). https://doi.org/10.1016/j.optmat.2015.11.038.
  • [23] Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634-644 (2016). https://doi.org/10.1039/C5LC01445J.
  • [24] Leal-Junior, A. G. et al. Polymer optical fiber sensors in healthcare applications: A comprehensive review. Sensors 19, 3156 (2019). https://doi.org/10.3390/s19143156.
  • [25] Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G. & Min, B.-K. A review on optical fiber sensors for environmental monitoring. Int. J. Pr. Eng. Man-GT. 5, 173-191 (2018). https://doi.org/10.1007/s40684-018-0017-6.
  • [26] Weng, S., Pei, L., Wang, J., Ning, T. & Li, J. High sensitivity side-hole fiber magnetic field sensor based on surface plasmon resonance. Chin. Opt. Lett. 14, 110603, (2016). https://doi.org/10.3788/COL201614.110603.
  • [27] Frazão, O. F. et al. Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber. Opt. Lett. 34, 76-78 (2009). https://doi.org/10.1364/OL.34.000076.
  • [28] Erdmanis, M. et al. Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber. Opt. Express 19, 13980-13988, (2011). https://doi.org/10.1364/OE.19.013980.
  • [29] Lin, H., Liu, F., Guo, H., Zhou, A. & Dai, Y. Ultra-highly sensitive gas pressure sensor based on dual side-hole fiber interferometers with Vernier effect. Opt. Express 26, 28763-28772 (2018). https://doi.org/10.1364/OE.26.028763.
  • [30] Dudek, M. & Köllö, K. K. Numerical simulations of a simple refractive index sensor based on side-hole optical fibres. Opto-Electron. Rev. 30, e143607 (2022). https://doi.org/10.24425/opelre.2022.143607.
  • [31] Wei, T., Han, Y., Li, Y., Tsai, H. L. &. Xiao, H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 16, 5764-5769 (2008). https://doi.org/10.1364/OE.16.005764.
  • [32] Wang, J., Zhao, J., Wang, J., Wan, H. & Zhang, Z. A multi-frequency fiber optic acoustic sensor based on graphene-oxide Fabry-Perot microcavity. Opt. Fiber Technol. 65, 102607 (2021). https://doi.org/10.1016/j.yofte.2021.102607.
  • [33] Rostamikafaki, Z. Optimization of the performance of biosensor based on photonic crystal resonant. Univers. J. Electr. Electron. Eng. 6, 203–213 (2013). https://doi.org.10.13189/ujeee.2019.060403.
  • [34] Tien, C.-L., Lin, H.-Y. & Su, S.-H. High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm. Adv. Condens. Matter Phys. 2018, 2303740 (2018). https://doi.org/10.1155/2018/2303740.
  • [35] Liu, Y., Qu, S. & Li, Y. Liquid refractive index sensor with three-cascades microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown. Appl. Phys. B-Lasers O. 110, 585589 (2013). https://doi.org/10.1007/s00340-012-5296-y.
  • [36] Xue, P., Zhang, Y., Xu, T. & Liu, X. Sensing characteristics of the F-P cavity on the tip of a microstructured fiber. Opt. Fiber Technol. 82, 103647 (2024). https://doi.org/10.1016/j.yofte.2023.103647.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This research was financially supported by the Military University of Technology under research project UGB. The S-H OF used in the research was kindly provided by the Laboratory of Optical Fibers Technology at Maria Curie-Skłodowska University in Lublin, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-328ac621-c690-4695-8c9b-1ee1d489735d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.