PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Proces usuwania rozproszonych zanieczyszczeń ciekłych z paliw i wody z wykorzystaniem wysokosprawnych włókninowych struktur koalescencyjnych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Przedmiotem badań, których wyniki przedstawiono w pracy, jest proces rozdzielania zdyspergowanych układów dwufazowych typu olej w wodzie (0/W) i woda w oleju (W/0) realizowany z wykorzystaniem wysokosprawnych struktur koalescencyjnych. Szczególny nacisk położono na usuwanie zemulgowanej wody z oleju napędowego, co stanowiło główny nurt badawczy i doprowadziło do opracowania nowatorskiego rozwiązania dwustopniowego kompaktowego filtra do montażu w pojazdach wyposażonych w silniki wysokoprężne. W pierwszym rozdziale pracy dokonano przeglądu metod separacji układów ciecz-ciecz, z naciskiem na urządzenia wyposażone w elementy koalescencyjne do rozdzielania stabilnych emulsji. Wskazano powszechnie obserwowane trudności oraz przedyskutowano znaczenie najistotniejszych parametrów, mających bezpośredni wpływ na ograniczenie skuteczności pracy struktur koalescencyjnych. Wykonano studium literaturowe dotyczące mechanizmu koalescencji rozproszonych kropel unoszonych w przepływie i związanych z nim modeli efektywności ich łączenia się. Następnie zestawiono i przedyskutowano różnorodne zależności opisujące skuteczność wychwytywania i koalescencji kropel dyspersji przepływającej przez złoże porowate. Sformułowano nowy model pozwalający na opis zjawisk depozycji i ociekania dużych kropel po koalescencji dla pojedynczej komórki obliczeniowej, który uwzględnia zarówno wpływ zwilżalności włókien i związanego z tym nasycenia struktury na skuteczność separacji, jak i umożliwia oszacowanie rozmiarów kropel i mechanizmów prowadzących do ich odłączania na wylocie. W części eksperymentalnej przeprowadzono w szerokim zakresie prace doświadczalne separacji dyspersji ciecz-ciecz z wykorzystaniem struktur polimerowych, celulozowych i włókien szklanych, w ramach których zweryfikowano tendencje podawane w literaturze przedmiotu oraz sformułowano wnioski, których część okazała się przeciwstawna doniesieniom literaturowym. Dla wyników odbiegających od ustalonych opinii nt. koalescencji kropel w strukturach włókninowych przedstawiono interpretację domniemanych mechanizmów mających wpływ na przebieg procesu. W ramach prac laboratoryjnych wykonano szereg modyfikacji badanych struktur koalescencyjnych w celu poprawy ich skuteczności. Badania separacji emulsji przeprowadzono w samodzielnie zaprojektowanej instalacji testowej, której uniwersalny charakter umożliwia badania separacji dyspersji wody w oleju i odwrotnej, a także prowadzenie eksperymentów w szerokim zakresie parametrów operacyjnych i dla różnej geometrii warstw włókninowych. Zwieńczeniem realizowanych badań doświadczalnych, wspartych teoretyczną analizą zjawisk i ich numerycznym opisem, jest zgłoszenie patentowe oraz praktyczne zastosowania opracowanych rozwiązań, których szczegóły przedstawiono w ostatnim rozdziale pracy.
EN
The aim of the monograph is the separation of liquid-liquid emulsions performed using fibrous coalescence media. The emphasis was put on removal of dispersed water from diesel fuel, which was the main course of the research work. The problems of diesel fuel filtration are commonly observed issue due to change of fuel properties in recent years. Hence, devising of a high-efficiency water separation system arises from a real demand from filter manufacturers. The research described in the monograph led to designing of a new two-stage filter for mounting directly in vehicles, but it can be easily scaled-up for higher throughputs. In first part of this work a review of coalescence separators for highly emulsified and stable dispersions was carried out. The parameters which negatively affect the separation performance were pointed out. A literature study on mechanism of binary coalescence between two free-flowing droplets was done, including review of the coalescence efficiency models. Then relations and models, which describe the operation of the coalescence porous media, were presented and discussed. The new modelling approach for deposition of emulsion droplets and drainage of large ones after the coalescence, i.e. detaching from the fibrous structures, was formulated. The model includes the effect of fiber wettability and saturation on the efficiency of separation as well as it allows to estimate the size of detached droplets, and determine a dominant mechanism leading to droplet disengagement. Its assumptions and simplifications were discussed in details. In experimental part of the work a wide range of experiments were carried out using the coalescence structures made of polymers, fiberglass and cellulose. The tendencies described in literature were verified. For results which do not comply with trends reported in literature, own interpretation of mechanisms which affect the process was proposed. Some modifications of coalescence structures were carried out, the properties of applied functionalization was verified in laboratory, and in final stage the effect of modification was established in emulsion separation test. The in-house designed test rig enabled examination of various elements, i.e. in form of flat sandwiched multilayer media or in form of cylindrical cartridges of various sizes. The universal design of the experimental system allowed testing of both O/W or W/O emulsions at a wide range of operating parameters. The experimental research programme supported with theoretical analysis of mechanisms and its numerical description enabled to design a new type of diesel filter, which was patented. The prototype system was built and the high-efficiency was confirmed in testing, as described in last chapter of the monograph. Other practical applications of coalescence media designed for a specific process were described.
Rocznik
Strony
3--152
Opis fizyczny
Bibliogr. 157 poz., rys., tab., wykr.
Twórcy
  • Katedra Inżynierii Procesów Zintegrowanych, Wydział Inżynierii Chemicznej i Procesowej, Politechnika Warszawska
Bibliografia
  • 1. Krasiński A. (2010) Koalescencja kropel w strukturach włóknistych i rozdzielanie układów dwufazowych ciecz-ciecz, Przemysł Chemiczny, 89 (5), 686-691.
  • 2. Lundgaard L.E., Berg G., Ingebrigtsen S., Atten P., rozdział 15 pt. Electrocoalescence for Oil-Water Separation : Fundamental Aspects w książce pod redakcją J. Sjoblom: Emulsions and Emulsion Stability 2nd edition, Taylor & Francis, 2006.
  • 3. Eow J.S., Ghadiri M., Sharif A.O. (2002) Electrostatic and hydrodynamic separation of aqueous drops in a flowing viscous oil. Chemical Engineering and Processing 41, 649-657.
  • 4. Friedemann J.D., Nilsen P.J., Piasecki W. (2004) Electrostatic Attraction of Particles: The Implications of Field Theory on Coalescer Design. Petroleum Science And Technology 22, 1087-1096.
  • 5. Lin C., He G., Li X., Peng L., Dong C., Gu S., Xiao G. (2007) Freeze/thaw induced demulsification of water-in-oil emulsions with loosely packed droplets. Separation and Purification Technology 56, 175-183.
  • 6. Rajaković V., Skala D. (2006) Separation of water-in-oil emulsions by freeze/thaw method and microwave radiation. Separation and Purification Technology 49, 192-196.
  • 7. Norma PN-EN 590:2013-12: Paliwa do pojazdów samochodowych - Oleje napędowe - Wymagania i metody badań.
  • 8. Stanfel C. (2009) Fuel filtration: Protecting the diesel engine, Filtration + Separation 46 (3), 22-25.
  • 9. Donaldsan Company Inc. (2017) Water is the Enemy of Diesel Engines, http://www.mycleandiesel.com/pages/ProblemWater.aspx
  • 10. Stone W., Bessee G., Stanfel C. (2009) Diesel Fuel/Water Separation Test Methods-Where Are We and Where Are We Going. SAE Int. J. Fuels Lubr., 2 (1), 317-323.
  • 11. Krasiński A., Wierzba P. (2014) Odwadnianie oleju napędowego z wykorzystaniem hydrofo­bizowanych spieków polimerowych. Inżynieria i Aparatura Chemiczna, 53(3), 155-156.
  • 12. Zhu Y., Wang D., Jiang L., Jin J. (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials, 6, e 101.
  • 13. Solomon B.R., Hyder M.N., Varanasi K.K. (2014) Separating Oil-Water Nanoemulsions Using Flux-Enhanced Hierarchical Membranes. Scientific Reports, 4, 5504, 1-6.
  • 14. Krasiński A. (2016) Separation of oil-in-water emulsions using polymer coalescence structures. Environment Protection Engineering, 42 (2), 19-39.
  • 15. Krasiński A. (2014) Multilayer PP filters for the separalion of O/W emulsions. Filtration + Separation, 51 (6), 22-28.
  • 16. Krasiński A., Wierzba P. (2016) Badania usuwania zanieczyszczeń olejowych z wody po procesie szczelinowania. Inżynieria i Aparatura Chemiczna, 55 (2), 58-59.
  • 17. Hazlett R.N. (1969) Fibrous Bed Coalescence of Water. Steps in the Coalescence Process. Industrial & Engineering Chemistry Fundamentals, 8 (4), 625-632.
  • 18. Hazlett R.N., Carhart H.W. (1972) Removal Water from Fuel Using a Fibrous Bed. Filtration & Separation, 9 (4), 456-462.
  • 19. Secerov-Sokolovic R.M., Sokolovic S.M. (2004) Effect of the nature of different polymeric fibers on steady-state bed coalescence of an oil-in-water emulsion. Industrial & Engineering Chemistry Research, 43, 6490-6495.
  • 20. Šećerov-Sokolović R.M., Vulić T., Sokolović S.M. (2007) Effect of bed length on steady- state coalescence of oil-in-water emulsion. Separalian & Purification Technology, 56, 79-84.
  • 21. Šećerov-Sokolović R.M., Sokolović S.M., Doković B.D. (1997) Effect of Wetting Conditions on Bed Coalescence of an Oil-in-Water Emulsion Using a Polyurethane Foam Bed. Industrial & Engineering Chemistry Fundamentals, 36 (11), 4949-4953.
  • 22. Fahim M.A., Othman F. M. (1987) Coalescence of secondary dispersions in composite packed beds. Journal of Dispersion Science, 8 (5/6), 507-523.
  • 23. Chu Z., Feng Y., Seeger S. (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54 (8), 2328-2338.
  • 24. Basu S. (1993) A Study on Effect of Wetting on Mechanism of Coalescence in a Model Coalescer. Journal of Colloid and Interface Science, 159 (1), 68-76.
  • 25. Sharifi H., Shaw J.M. (1996) Secondary drop production in packed-bed coalescers. Chemical Engineering Science, 51 (21), 4817-4826.
  • 26. Bansal S., Von Arnim V., Stegmaier T., Planck H. (2011) Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance. Journal of Hazardous Materials, 190 (1-3), 45-50.
  • 27. Patel Sh.U., Kulkarni P.S., Patel S.U., Chase G.G. (2012) The effect of surface energy of woven drainage channels in coalescing filters. Separation and Purification Technology, 87, 54-61.
  • 28. Kulkarni P.S., Patel Sh.L., Chase G.G. (2012) Layered hydrophilic/hydrophobic fiber media for water-in-oil coalescence. Separation and Purification Technology, 85, 157-164.
  • 29. Sećerov-Sokolović R.M., Govedarica D.D., Sokolović D.S. (2014) Selection of Filter Media for Steady-State Bed Coalescers. Industrial & Engineering Chemistry Research, 53(6), 2484-2490.
  • 30. Sećerov-Sokolović R.M., Vulic T.J., Sokolović S.M. (2006) Effect of fluid flow orientation on the coalescence of oil droplets in steady-state bed coalescers. Industrial & Engineering Chemistry Research, 45 (11), 3891-3895.
  • 31. Agarwal S., Von Arnim V., Stegmaier T., Planck H., Agarwal A. (2013) Effect of Fibrous Coalescer Geometry and Operating Conditions on Emulsion Separation. Industrial & Engineering Chemistry Research, 52 (36), 13164-13170.
  • 32. Agarwal S., Von Arnim V., Stegmaier T., Planck H., Agarwal A. (2013) Role of surface wettability and roughness in emulsion separation. Separation and Purification Technology, 107, 19-25.
  • 33. Govedarica D.D., Šećerov-Sokolović R.M., Kiralj A.I., Govedarica O.M., Sokolović D., Hadnadjev-Kostic M.S. (2015) Liquid-liquid separation using steady-state bed coalesce. Hemijska Industrija, 69 (4), 339-345.
  • 34. Krasiński A., Wierzba P. (2015) Removal of emulsified water from diesel fuel using polypropylene fibrous media modified by ionization during melt-blow process. Separation Science and Technology, 50 (10), 1541-1547.
  • 35. Sećerov-Sokolović R.M., Vulić T.J., Sokolović S.M., Marinković-Neducin R.P. (2003) Effect of Fibrous Bed Permeability on Steady-State Coalescence. Industrial & Engineering Chemistry Research, 42 (13), 3098-3102.
  • 36. Krasiński A. (2013) A Numerical Model of Droplets Coalescence and Drainage in Fibrous Structures. Chemical Engineering Transactions, 32, 1495-1500.
  • 37. Sareen S.S., Rose P.M., Gudesen R.C., Kintner R.C. (1966) Coalescence in fibrous beds. AIChE Journal, 12 (6), 1045-1050.
  • 38. Wines T.H., Brown R.L. (1997) Difficult liquid-liquid separations. Chemical Engineering, 72 (12), 95-101.
  • 39. Bitten J.F. (1970) Coalescence of water droplets on single fibers. Journal of Colloid & Interface Science, 33 (2), 265-271.
  • 40. Spielman L.A., Goren S.L. (1972) Theory of coalescence by flow through porous media. Industrial & Engineering Chemistry Fundamentals, 11 (1), 66-72.
  • 41. Spielman L.A., Goren S.L. (1972) Experiments in Coalescence by Flow through Fibrous Mats. Industrial & Engineering Chemistry Fundamentals, 11 (1), 73-83.
  • 42. Shin S., Chase G.G. (2004) Water-in-oil coalescence in micro-nanofiber composite filters. AIChE Journal, 50 (2), 343-350.
  • 43. Shin C., Chase G.G., Reneker D.H. (2005) The effect of nanofibers on liquid-liquid coalescence filter performance. AIChE Journal, 51 (12), 3109-3113.
  • 44. Shin C., Chase G.G. (2006) Separation of water-in-oil emulsions using g1ass fiber media augmented with polymer nanofibers. Journal of Dispersion Science & Technology, 27 (4), 517-522.
  • 45. Patel S.U., Chase G.G. (2010) Gravity orientation and woven drainage structures in coalescing filters. Separation and Purification Technology, 75, 392-401.
  • 46. Shin C., Chase G.G. (2004) The effect of wettability on drop attachment to glass rods. Journal of Colloid and Interface Science, 272, 186-190.
  • 47. Davies G.A., Jeffreys G.V. (1970) Coalescence of Droplets in Fiber Beds. Industrial & Engineering Chemistry Fundamentals, 9 (3), 519-520.
  • 48. Austin D.G., Jeffreys G.V. (1981) Coalescence phenomena in liquid-liquid systems. Journal of Chemical Technology & Biotechnology, 31 (1), 475-488.
  • 49. Davies G.A., Jeffreys G.V., Azfal M. (1972) New packing for coalescence and separation of dispersions. British Chemical Engineering & Process Technology, 17 (9), 709-714.
  • 50. Davies G.A. (1982) Recent development in coalescers for separation of liquids. CHEMSA, 8(2), 6-7.
  • 51. Fahim M.A., Akbar A.M. (1984) Removal of fine oily hazes from wastewater using deep fibrous bed coalescer. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering, 19 (3), 299-319.
  • 52. Rebelein F., Blass E. (1990) Separation of micro-dispersions in fibre-beds. Filtration & Separation, 27 (5), 360-363.
  • 53. Clayfield A.J., Dixon A. G., Foulds A. W., Miller R.J.L. (1985) The coalescence of secondary dispersions. I. The effect of wettability and surface energy. Journal of Colloid & Interface Science, 104 (2), 500-511.
  • 54. Moorthy K., Newby B., Chase G.G. (2007) Effect of Surface Energy of Fibres on Coalescence Fuel Filtration. Exploration & Production-Oil & Gas Review, 2, 38-45.
  • 55. Agarwal, S., Von Arnim, V., Stegmaier, T., Planck, H., Agarwal, A. (2013) Role of surface wettability and roughness in emulsion separation. Separation & Purification Technology, 107, 19-25.
  • 56. Li X., Hu D., Huang K., Yang C. (2014) Hierarchical rough surfaces formed by LBL self-assembly for oil -water separation. Journal of Materials Chemistry A, 2, 11830-11838.
  • 57. Wu Y., Manzo G.M., Chase G.G. (2015) Thickness shrinkage of microfiber media in gas-liquid coalescence filtration. Separation & Purification Technology, 141, 188 -196.
  • 58. Hoffmann S., Nitsch W. (2001) Membrane Coalescence for Phase Separation of Oil-in Water Emulsions Stabilized by Surfactants and Dispersed into Smallest Droplets. Chemical Engineering & Technology, 24 (1), 22-27.
  • 59. Chesters A.K. (1991) The modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Chemical Engineering Research and Design: transactions of the Institution of Chemical Engineers Part A, 69, 259-270.
  • 60. Howarth W.J. (1964) Coalescence of drops in a turbulent flow field. Chemical Engineering Science, 19, 33 -38.
  • 61. Sovova H. (1981) Breakage and coalescence of drops in a batch stirred vessel - II Comparison of model and experiments. Chemical Engineering Science, 36, 1567-1573.
  • 62. Simon M. (2004) Koaleszenz von Tropfen und Tropfen schwaermen. Praca doktorska, Uniwersytet Kaiserslautern.
  • 63. Doubliez L. (1991) The drainage and rupture of a non-foaming liquid film formed upon bubble impact with a free surface. International Journal of Multiphase Flow, 17, 783-803.
  • 64. Lehr F., Mewes D. (1999) A transport equation for the interfacial area density applied to bubble columns. Chemical Engineering Science, 56; 1159-1166.
  • 65. Ross S.L. (1971) Measurements and models of the dispersed phase mixing process. Praca doktorska, Uniwersytet Michigan, AnnArbor.
  • 66. Coulaloglou C.A., Tavlarides L. L. (1977) Description of interaction processes in agitated liquid-liquid dispersions. Chemical Engineering Science, 32, 1289-1297.
  • 67. Lee J.C., Hodgson T.D. (1968) Film flow and coalescence - I Basic relations, film shape and criteria for interface mobility. Chemical Engineering Science, 23, 1375-1397.
  • 68. Jeffreys G.V., Davies G.A. (1971) Coalescence of Liquid Droplets and Liquid Dispersion: Recent Advances in Liquid-Liquid Extraction, 1st ed Pergamon Press, Oxford, UK, 495-584.
  • 69. Davis R.H., Schonberg J.A., Rallison J.M. (1989) The lubrication force between two viscous drops. Physics of Fluids A, 1 (1), 77-81.
  • 70. MacKay G.D.M., Mason S.G. (1963) The gravity approach and coalescence of fluid drops at liquid interfaces. Canadian Journal of Chemical Engineering, 41, 203-212.
  • 71. Lin T.J., Lin G.M. (1999) The Mechanisms of Bubble Coalescence in a Non-Newtonian Fluid. Canadian Journal of Chemical Engineering, 81 (3-4), 476-482.
  • 72. Podgórska W., Bałdyga J. (2001) Scale-up effects on the drop size distribution of liquid-liquid dispersions in agitated vessels. Chemical Engineering Science, 56 (3), 741-746.
  • 73. Sagert N.H., Quinn M.J. (1976) The coalescence of H2S and CO2 hubbies in water. Canadian Journal of Chemical Engineering, 54, 392-398.
  • 74. Prince M.J., Blanch H.W. (1990) Bubble coalescence and break-up in air-sparged bubble columns. AIChE Journal, 36, 1485-1499.
  • 75. Tsouris C., Tavlarides L.L. (1994) Breakage and coalescence models for drops in turbulent dispersions. AIChE Journal, 40, 395+406.
  • 76. Hasseine A., Meniai A.H., Lehocine M.B., Bart H.J. (2005) Assessment of drop coalescence and breakup for stirred extraction columns. Chemical Engineering & Technology, 28, 552-560.
  • 77. Derjaguin B.V., Kussakov M.M. (1939) Anomalous properties of thin polymolecular films. Acta Physicochim. URSS, 10, 25-30.
  • 78. Chesters A.K. (1975) The applicability of dynamic-similarity criteria to isothermal, liquid-gas, two-phase flows without mass transfer. International Journal of Multiphase Flow, 2, 191-212.
  • 79. Luo H. (1993) Coalescence, breakup and liquid circulation in bubble column reactors. Praca doktorska, The Norwegian Institute of Technology, Trondheim.
  • 80. Jeelani S.A.K., Hartland S. (1991) Collision of oscillating liquid drops. Chemical Engineering Science, 46, 1807-1814.
  • 81. Jeelani S.A.K., Hartland S. (1991) Effect of approach velocity on binary and interfacial coalescence. Transactions of IChemE, 69 (A), 271-281.
  • 82. Levich V.G. (1962) Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs, NJ.
  • 83. Kamp A.M., Chesters A.K. (2001) Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. International Journal of Multiphase Flow, 27, 1363-1396.
  • 84. Sherony D.F. (1967) Praca magisterska, Illinois Institute of Technology, Chicago.
  • 85. Davies G.A., Jeffreys G.V. (1969) Coalescence of droplets in packings: Factors affecting the separation of droplet dispersions. Filtration & Separation, 6 (4), 349-354.
  • 86. Farrow R.M. (1966) Filtration & Separation, 3, 490-494.
  • 87. Vinson C.G., Churchill S.W. (1970) Removal of drops from liquid-liquid dispersions upon flow through screens. Chemical Engineering Journal, 1 (2), 110-119.
  • 88. Spielman L.A., Goren S.L. (1970) Progress in Induced Coalescence and a New Theoretical Framework for Coalescence by Porous Media. Industrial & Engineering Chemistry, 62 (10), 10-24.
  • 89. Sherony D.F., Kintner, R. C. (1971) Coalescence of an emulsion in fibrous bed: Part I. Theory. Canadian Journal of Chemical Engineering, 49, 314-320.
  • 90. Sherony D.F. ( 1969) Praca doktorska, Illinois Institute of Technology, Chicago.
  • 91. Li J., Gu Y. (2005) Coalescence of oil-in-water emulsions in fibrous and granular beds. Separation and Purification Technology, 42 (1), 1-13.
  • 92. Rosenfeld J.I., Wasan, D.T. (1974) Coalescence of drops in a liquid-liquid dispersion by passage through a fibrous bed. Canadian Journal of Chemical Engineering, 52 (1), 3-10.
  • 93. Secerov-Sokolovic R.M., Sokolovic S.M., Sevic S.N., Mihajovic D. (1996) Influence of oil properties on bed coalescence efficiency. Separation Science and Technology, 21 (15), 2089-2104.
  • 94. Rebelein F. (1989) Praca doktorska, Technical University of Munich, Germany.
  • 95. Mullins B.J., Kasper G. (2006) Comment on: clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study of Frising et al. Chemical Engineering Science, 61, 6223-6227.
  • 96. Speth H., Pfenning A., Chatterjee M., Franken H. (2002) Modellierung von Faserbett- Koaleszenzabscheidern. Chemie Ingenieur Technik, 74 (3), 266-270.
  • 97. Burkholz A. (1989) Droplet Separation, VCH Verlagsgesellschaft, Weinheim.
  • 98. Magiera R. (1995) Praca doktorska, Technical University of Munich, Germany.
  • 99. Sherony D.F., Kintner R.C., Wasan D.T. (1978) Coalescence of Secondary Emulsions in Fibrous Beds. Surface and Colloid Science, 10, 99-161.
  • 100. Mino Y., Kagawa Y, Matsuyama H., Ishigami T. (2016) Permeation of Oil-in-Water Emulsions Through Coalescing Filter: Two-Dimensional Simulation Based on Phase-Field Model. AIChE Journal, 62 (7), 2525-2532.
  • 101. Iwahara D., Shinto H., Miyahara M., Higashitani K. (2003) Liquid drops on homogeneous and chemically heterogeneous surfaces: a two-dimensional lattice Boltzmann study. Langmuir, 19, 9086-9093.
  • 102. Gutkowski B., Mydlarczyk S., Kowalska M., Hupka J. (1984) Saturation profiles in coalescence bed. Studies in Environmental Science, 23, 285-293.
  • 103. Andan S., Hariharan S.I., Chase G.G. (2008) Continuum Model Evaluation of the Effect of Saturation on Coalescence Filtration. Separation Science and Technology, 43, 1955-1973.
  • 104. Bitten J.F., Fochtman E.G. (1971) Water distribution in fiber-bed coalescers. Journal of Colloid and Interface Science, 37 (2), 312-317.
  • 105. Speth H., Pfenning A., Chatterjee M., Franken H. (2002) Coalescence of secondary dispersions in fiber beds. Separation and Purification Technology, 29, 113-119.
  • 106. Sherony D.F., Kintner R. C. (1971) Coalescence of an emulsion in a fibro us bed: Part II. Experimental. Canadian Journal of Chemical Engineering, 49, 321-325.
  • 107. Fowler Z.L., Hertel K.L. (1990) Flow of a Gas Through Porous Media. Journal of Applied Physics, 11, 496-502.
  • 108. Davis C.N. (1960) The separation of airborne dust and particles. Proc. Inst. Mech. Engrs., B1, 185-198.
  • 109. Ingmanson W.L., Andrews B.D. (1963) High velocity water flow through fiber mats. Tappi, 46 (3), 150-155.
  • 110. Carroll C.W. (1965) The status of the sheet forming process. The Institute of Paper Chemistry.
  • 111. Chen F.J. (1982) The permeability of compressed fiber mats and the effect of surface area reduction and fiber geometry. The Institute of Paper Chemistry.
  • 112. Richardsen J.G., Kerver J.K., Hafford J.A., Osoba J.S. (1952) Laboratory determination of relative permeability. Trans. AIME, 195, 187-196.
  • 113. Beatty H.A. (1966) Ethyl Corporation, Ferndale, Michigan, Interim Technical Report GR-66-30.
  • 114. Sharifi H., Shaw J.M. (1996) Secondary drop production in packed-bed coalescers. Chemical Engineering Science, 51 (21), 4817-4826.
  • 115. Mullins B.J., Pfrang A., Braddock R.D., Schimmel T., Kasper G. (2007) Detachment of liquid droplets from fibres - Experimental and theoretical evaluation of detachment force due to interfacial tension effects. Journal of Colloid and Interface Science, 312, 333-340.
  • 116. Hotz C.J., Mead-Hunter R., Becker T., King A.J.C., Wurster S., Kasper G., Mullins B.J. (2015) Detachment of droplets from cylinders in flow using an experimental analogue. Journal of Fluid Mechanics, 771, 327-340.
  • 117. Chou T.H., Hong S.J., Liang Y.E., Tsao H.K., Sheng Y.J. (2011) Equilibrium phase diagram of drop-on-fiber: Coexistent states and gravity effect. Langmuir, 27, 3685-3692.
  • 118. Mead-Hunter R., King A.J.C. Mullins B.J. (2012) Plateau Rayleigh Instability Simulation. Langmuir, 28, 6731-6735.
  • 119. Stechkina I.B., Kirsch A., Fuchs N.A. (1969) Calculation of Aerosol Deposition Model Filter in the Range of Maximum Penetration. Annals of Occupational Hygiene, 12, 1-8.
  • 120. Lee K.W., Liu B.Y.H. (1982) Theoretical-Study of Aerosol Filtration by Fibrous Filters. Aerosol Science & Technology, l, 147-161.
  • 121. Langmuir I., Biodgett K.B. (1945) Mathematical Investigation of Water Droplet Trajectories. General Electric report RL 225 Ad 64354.
  • 122. Walstra P. (1993) Principles of emulsion formation. Chemical Engineering Science, 48 (2), 333-349.
  • 123. Him U., Bauer W. (2006) A review of image analysis based methods to evaluate fiber properties. Lenzinger Berichte, 86, 96-105.
  • 124. Krasiński A. (2012) Określanie zwilżalności włókninowych materiałów koalescencyjnych metodą wzniesienia kapilarnego. Przemysł Chemiczny, 91 (9), 1785-1789.
  • 125. Fowkes F.M. (1964) Attractive forces at interfaces. Journal of Industrial & Engineering Chemistry, 56, 40-52.
  • 126. Owens D.K., Wendt R.C. (1969) Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13 (8), 1741-1747.
  • 127. Wu S. (1982) Polymer Interface and Adhesion. Marcel Dekker, New York.
  • 128. Williams D.L., Kuhn A.T., Amann M.A., Hausinger M.B., Konarik M.M., Nesselrode E.I. (2010) Computerised measurement of contact angles. Galvanotechnik, 10, 1-3.
  • 129. Wierzba P., Bień J., Krasiński A. (2016) Usuwanie wody i cząstek z oleju napędowego z wykorzystaniem modyfikowanych filtrów celulozowych. Materiały konferencyjne, XXII Ogólnopolska Konferencja Inżynierii Chemicznej i Procesowej, Spała.
  • 130. Lu C., Yang C., Hao P., He F., Zheng Q. (2010) Sliding of Water Droplets on Microstructured Hydrophobic Surfaces. Langmuir, 26 (11), 8704-8708.
  • 131. Frenkel Y.I.J. (1948) On the behavior of liquid drops on a solid surface: I. The sliding of drops on an inclined surface. Journal of Experimental and Theoretical Physics, 18, 659-668.
  • 132. Furmidge C.G.L. (1962) Studies at Phase Interfaces. Journal of Colloid Science, 11 (4), 309-324.
  • 133. Dang-Vu T., Hupka J. (2005) Characterization of porous materials by capillary rise method. Physicochemical Problems of Mineral Processing, 39, 47-65.
  • 134. Yang B.W., Chang Q. (2008) Wettability studies of filter media using capillary rise test. Separation and Purification Technology, 60, 335-340.
  • 135. Saha A.A., Mitra S.K. (2009) Effect of dynamic contact ang1e in a volume of fluid (VOF) model for a microfluidic capillary flow. Journal of Colloid and Interface Science, 339 (2), 461-480.
  • 136. Siebold A., Walliser A., Nardin M., Oppliger M., Schultz J. (1997) Capillary Rise for Thermodynamic Characterization of Solid Particle Surface. Journal of Colloid and Interface Science, 186 (1), 60-70.
  • 137. Yang B.W., Chang Q. (2008) Wettability studies of filter media using Capillary rise test. Separation & Purification Technology, 60, 335-340.
  • 138. Źródło internetowe: http://www.accudynetest.com/polytable_01.html.
  • 139. Qing C., Bigui W., Yingdong H. (2009) Capillary pressure method for measuring lipophilic hydrophilic ratio of filter media. Chemical Engineering Journal, 150 (2-3), 323-327.
  • 140. Mullinsa B.J., Braddock R.D., Kasper G. (2007) Capillarity in fibrous filter media: Relationship to filter properties. Chemical Engineering Science, 62, 6191-6198.
  • 141. Kokotov M., Hades G. (2009) Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO 4 substrate activation. Journal of Materials Chemistry, 19, 3847-3854.
  • 142. Wang Z., Espin L., Bates F.S., Kumar S., Macosko C.W. (2016) Water droplet spreading and imbibition on superhydrophilic poly(butylene terephthalate) melt-blown fiber mats. Chemical Engineering Science, 146, l 04-114.
  • 143. Wiliński Z., Lipińska L., Batijewski R., Marcjaniuk A. (2009) Chemiczne i elektrochemiczne wytwarzanie warstw tlenku cynku. Źródło: http://rcin.org.pl
  • 144. Zhang J., Sun L., Yin J., Su H., Liao C., Yan C. (2002) Control of ZnO Morphology via a Simple Solution Route. Chemistry of Materials, 14, 4172-4177.
  • 145. Wierzba P. (2013) Odwadnianie paliw z wykorzystaniem filtrów koalescencyjnych. Praca dyplomowa magisterska, Politechnika Warszawska.
  • 146. Sztuk-Sikorska E., Gradoń L. (2016) Biofouling reduction for improvement of depth water filtration. Filter production and testing. Chemical and Process Engineering, 37 (3), 319-330.
  • 147. Sztuk E., Skowroński J., Gradoń L. (2016) Composite depth filters for removal of abiotic and biotic objects. Materiały konferencyjne FILTECH 2016, Kolonia.
  • 148. Cunha A. G., Gandini A. (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part l. Cellulose. Cellulose, 17, 875-889.
  • 149. Kiziukiewicz D. (2015) Hydrofobizacja celulozowych struktur filtracyjnych. Praca dyplomowa inżynierska, Politechnika Warszawska.
  • 150. Bień J. (2017) Usuwanie wody i cząstek z oleju napędowego z wykorzystaniem modyfikowanych filtrów celulozowych. Praca dyplomowa inżynierska, Politechnika Warszawska.
  • 151. PN-82/C.04565.01: Woda i ścieki - Badanie zawartości ropy naftowej i jej składników. Oznaczanie niepolarnych węglowodorów alifatycznych metodą spektrofotometrii w podczerwieni.
  • 152. Göbel J.G., Joppien G.R. (1997) Dynamic Interfacial Tensions of Aqueous Triton X-100 Solutions in Contact with Air, Cyclohexane, n-Heptane, and n-Hexadecane. Journal of Colloid Interface Science, 191 (1), 30-37.
  • 153. Krasiński A., Kozdroń A. (2016) High-efficiency coalescence filters for separation of emulsified water from diesel fuel. Materiały konferencyjne FILTECH, Kolonia.
  • 154. Krasiński A., Gradoń L., Bodasiński J., Kmuk P., Gradoń J. (2017) Separation system for simultaneous removal of both solid particles and liquid droplets suspended in another liquid. Zgłoszenie patentowe WIPO/PCT nr WO 2017007348 A1.
  • 155. Krasiński A., Gradoń L. (2016) Comprehensive system for diesel fuel cleaning. Filtration + Separation, 53 (1), 33-36.
  • 156. Zhang K., Liu F., Williams A.J., Qu X., Feng J.J., Chen C.H. (2015) Self-Propelled Droplet Removal from Hydrophobic Fiber-Based Coalescers. Physical Review Letters, 115, 074502, 1-5.
  • 157. Moghtadernejad S., Tembely M., Jadidi M., Esmail N., Dolatabadi A. (2015) Shear driven droplet shedding and coalescence on a superhydrophobic surface. Physics of Fluids, 27, 032106, 1-19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3287cb95-b990-4ed1-b7cc-f489efd69edb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.