Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A review concerning main processes of hydrogenation of carbon oxides towards synthesis of methanol, mixture of methanol and higher aliphatic alcohols and one-step synthesis of dimethyl ether as well as methanol steam reforming is given. Low-temperature methanol catalysts and low-temperature modified methanol catalysts containing copper as primary component and zinc as secondary one are described.
Czasopismo
Rocznik
Tom
Strony
479--496
Opis fizyczny
Bibliogr. 109 poz., wykr., tab.
Twórcy
autor
- Polish Academy of Sciences, Institute of Chemical Engineering, 44-100 Gliwice, Bałtycka 5, Poland
autor
- Polish Academy of Sciences, Institute of Chemical Engineering, 44-100 Gliwice, Bałtycka 5, Poland
Bibliografia
- 1. Abu-Dahrieh J., Rooney D., Goguet A., Saih Y., 2012. Activity and deactivation studies for direct dimethyl ether synthesis using CuO–ZnO–Al2O3with NH4ZSM-5, HZSM-5 or γ-Al2O3. Chem. Eng. J., 203, 201-211. DOI: 10.1016/j.cej.2012.07.011.
- 2. Agrell J., Boutonnet M., Fierro J.L.G., 2003., Production of hydrogen from methanol over binary Cu/ZnO catalysts. Part II. Catalytic activity and reaction pathways. Appl. Catal. A: Gen., 253, 213-223. DOI: 10.1016/S0926-860X(03)00521-0.
- 3. Agrell J., Boutonnet M., Melián-Cabrera I., Fierro J.L.G., 2003. Production of hydrogen from methanol over binary Cu/ZnO catalysts. Part I. Catalyst preparation and characterization. Appl. Catal. A: Gen., 253, 201-211. DOI: 10.1016/S0926-860X(03)00520-9.
- 4. Apanel G., Johnson E., 2004. Direct methanol fuel cells – ready to go commercial? Fuel Cells Bulletin, 11, 12-17. DOI: 10.1016/S1464-2859(04)00410-9.
- 5. Arena F., Italiano G., Barbera K., Bordiga S., Bonura G., Spadaro L., Frusteri F., 2008. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2catalysts in the CO2hyrogenation to CH3OH. Appl. Catal. A: Gen., 350, 16-23. DOI: 10.1016/j.apcata.2008.07.028.
- 6. Behrens M., Studt F., Kasatkin I., Kühl S., Hävecker M., Abild-Pedersen F., Zander S., Girgsdies F., Kurr P., Kniep B.-L., Tovar M., Fischer R.W., Nørskov J.K., Schlögl R., 2012. The active site of methanol synthesis over Cu/ZnO/Al2O3. Science, 336, 893-897. DOI: 10.1126/science.1219831.
- 7. Beretta A., Sun Q., Herman R.G., Klier K., 1996. Production of methanol and isobutyl alcohol mixtures over double-bed cesium-promoted Cu/ZnO/Cr2O3 and ZnO/Cr2O3 catalysts. Ind. Eng. Chem. Res., 35, 1534-1542. DOI: 10.1021/ie9505219.
- 8. Błasiak E., 1950. Sposób wytwarzania wysoko aktywnego katalizatora do syntezy metanolu. Patent RP, No. 34000.
- 9. Bonura G., Arena F., Mezzatesta G., Cannilla C., Spadaro L., Frusteri F., 2011. Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal. Today, 171, 251-256. DOI: 10.1016/j.cattod.2011.04.038.
- 10. Breen J.P., Ross J.R.H., 1999. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-Al catalysts. Catal. Today, 51, 521-533. DOI: 10.1016/S0920-5861(99)00038-3.
- 11. Burcham M.M., Herman R.G., Klier K., 1998. Higher alcohol synthesis over double bed Cs−Cu/ZnO/Cr2O3 catalysts: Optimizing the yields of 2-methyl-1-propanol (isobutanol). Ind. Eng. Chem. Res., 37, 4657-4668. DOI: 10.1021/ie9705620.
- 12. Centi G., Perathoner S., 2009. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today, 148, 191-205. DOI: 10.1016/j.cattod.2009.07.075.
- 13. Cheng W.-H., Chen I., Liou J.-S., Lin S.-S., 2003. Supported Cu catalysts with yttria-doped ceria for steam reforming of methanol. Top. Catal., 22, 225-233. DOI: 10.1023/A:1023523903281.
- 14. Courty Ph., Ajot H., Marcilly Ch., Delmon B., 1973. Oxydes mixtes ou en solution solide sous forme très divisée obtenus par décomposition thermique de précurseurs amorphes. Powder Technol., 7, 21-38. DOI: 10.1016/0032-5910(73)80005-1.
- 15. Ding M., Liu J., Zhang Q., Tsubaki N., Wang T., Ma L., 2012. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis. Catal. Commun., 28, 138-142. DOI: 10.1016/j.catcom.2012.08.027.
- 16. European Biofuels Technology Platform: www.biofuelstp.eu
- 17. Fei J., Hou Z., Zhu B., Lou H., Zheng X., 2006. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts. Appl. Catal A: Gen., 304, 49-54. DOI: 10.1016/j.apcata.2006.02.019.
- 18. Frank B., Jentoft F.C., Soerijanto H., Kröhnert J., Schlögl R., Schomäcker R., 2007. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. J. Catal., 246, 177-192. DOI: 10.1016/j.jcat.2006.11.031.
- 19. Fujiwara M., Ando H., Tanaka M., Souma Y., 1994. Hydrogenation of carbon dioxide over Cu-Zn-Cr oxide catalysts. Bull. Chem. Soc. Jpn., 67, 546-550.
- 20. García-Trenco A., Martínez A., 2012. Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity. Appl. Catal. A: Gen., 411-412, 170-179. DOI: 10.1016/j.apcata.2011.10.036.
- 21. Goehna H., Koening P., 1994. Producing methanol from CO2. Chem. Tech., 36-39.
- 22. Grabowski R., Słoczyński J., Śliwa M., Mucha D., Socha R.P., Lachowska M., Skrzypek J., 2011. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2catalysts in the hydrogenation of CO2 to methanol. ACS Catalysis, 1, 266-278. DOI: 10.1007/s11144-010-0213-z.
- 23. Grzesik M., Ptaszek A., Skrzypek J., Derewiński M., 2012. Kinetyka dehydratacji metanolu do eteru dimetylowego na katalizatorze zeolitowym H-ZSM-5. Przem. Chem., 91, 1388-1392.
- 24. Hadden R.A., Lambert P.J., Ranson C., 1995. Relationship between the copper surface area and the ativity of CuO/ZnO/Al2O3 water-gas shift catalysts. Appl. Catal. A: Gen., 122, L1-L4. DOI: 10.1016/0926-860X(94)00263-0.
- 25. Herman R.G., 2000. Advances in catalytic synthesis and utilization of higher alcohols. Catal. Today, 55, 233-245. DOI: 10.1016/S0920-5861(99)00246-1.
- 26. Huang G., Liaw B., Jhang C.-J., Chen Y.-Z., 2009. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Appl. Catal. A: Gen., 358, 7-12. DOI: 10.1016/j.apcata.2009.01.031.
- 27. Huang X, Ma L., Wainwright M.S., 2004. The influence of Cr, Zn and Co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions. Appl. Catal. A: Gen., 257, 235-243. DOI: 10.1016/j.apcata.2003.07.012.
- 28. Idem R.O., Bakhshi N.N., 1995. Production of hydrogen from methanol over promoted coprecipitated Cu-Al catalysts: the effect of various promoters and catalyst activation methods. Ind. Eng. Chem. Res., 34, 1548-1557. DOI: 10.1021/ie00044a006.
- 29. Ihm S.K., Park Y.K., Jeon J.K., Park K.Ch., Lee D.K., 1997. A study on methanol synthesis throught CO2 hydrogenation over copper-based catalysts. Fourth International Conference on Carbon Dioxide Utilization, Kyoto, Japan (P-052).
- 30. Jia G.-x., Ma H.-b., Tan Y.-s., Han Y.-z., 2005. Effect of particle size on the hybrid catalyst activity for slurry phase dimethyl ether synthesis. Ind. Eng. Chem. Res., 44, 2011-2015. DOI: 10.1021/ie049385a.
- 31. Jun K.-W., Lee S.-I., Jung M.-H., Shen W.-J., Choi M.-J., Lee K.-W., 1997. Effective conversion of CO2 to methanol and dimethyl ether over hybrid catalysts. Fourth International Conference on Carbon Dioxide Utilization, Kyoto, Japan (P-033).
- 32. Keim W., Falter W., 1989. Isobutanol from synthesis gas. Catal. Lett., 3, 59-63. DOI: 10.1007/BF00765055.
- 33. Kilo M., Weigel J., Wokaun A., Koeppel R.A., Stoeckli A., Baiker A., 1997. Effect of the addition of chromium-and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide. J. Molec. Catal.A-Chem ., 126, 169-184. DOI: 10.1016/S1381-1169(97)00109-X.
- 34. Kotowski W., 1962. Betriebserfahrungen mit einem Kupferkatalysator. Chemische Technik., 41, 204-205.
- 35. Kulawska M., 2004. Wpływ składu gazu syntezowego na wydajność wyższych alkoholi alifatycznych. Chem. Process Eng., 25, 1213-1218.
- 36. Kulawska M., Moroz H., 2007. Cs-promoted copper catalyst for synthesis of higher aliphatic alcohols from syngas. Chem. Process Eng., 28, 445-452.
- 37. Kulawska M., Skrzypek J., 2001. Kinetics of the synthesis of higher aliphatic alcohols from syngas over a modified methanol synthesis catalyst. CEP, 40, 33-40. DOI: 10.1016/S0255-2701(00)00107-0.
- 38. Lachowska M., 2004a. Reforming metanolu parą wodną na katalizatorze miedziowo-cynkowo-cyrkonowym modyfikowanym Ga, Mn oraz Mg. Inż. Chem. Proces., 25, 1243-1247.
- 39. Lachowska M., 2004b. Termodynamika procesu reformingu metanolu parą wodną. Inż. Chem. Proces., 25, 231-238.
- 40. Lachowska M., 2007. Au-, Ag- and Pd-promoted Cu/Zn/Zr catalysts in steam reforming of methanol. Chem. Process Eng., 28, 803-807.
- 41. Lachowska M., 2010. Steam reforming of methanol over Cu/Zn/Zr/Ga catalyst: effect of the reduction conditions on the catalytic performance. Reac. Kinet. Mech. Cat., 101, 85-91. DOI: 10.1007/s11144-010-0213-z.
- 42. Lachowska M., Skrzypek J., 2004a. Ga, Mn and Mg promoted copper/zinc/zirconia – catalysts for hydrogenation of carbon dioxide to methanol. Stud. Surf. Sci. Catal., 153, 173-176. DOI: 10.1016/S0167-2991(04)80241-6.
- 43. Lachowska M., Skrzypek J., 2004b. Methanol synthesis from carbon dioxide and hydrogen over Mn-promoted copper/zinc/zirconia catalysts. React. Kinet. Catal. Lett., 83, 269-273. DOI: 10.1023/B:REAC.0000046086.93121.36.
- 44. Lachowska M., Skrzypek J., Krupa K., 2004. Uwodornianie dwutlenku węgla w kierunku metanolu na katalizatorze miedziowo-cynkowym z dodatkami Ga oraz Zr. Inż. Chem. Proces., 25, 1249-1253.
- 45. Lee J.S., Lee K.H., Lee, S.Y, Kim Y.G., 1993. A comparative study of methanol synthesis from CO2/H2over a Cu/ZnO/Al2O3 catalyst. J. Catal., 144, 414-424. DOI: 10.1006/jcat.1993.1342.
- 46. Lee J.S., Moon K.I., Lee S.H., Lee S.Y., Kim Y.G., 1995. Modified Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2/H2and CO/H2. Catal. Lett., 34, 93-99. DOI: 10.1007/BF00808326.
- 47. Lee K.H., Lee J.S., 1995. Effects of catalyst composition on methanol synthesis from CO2/H2. Korean J. Chem. Eng., 12, 460-465. DOI: 10.1007/BF02705811.
- 48. Leszczyński S., Perspektywy zastosowania metanolu w ogniwach paliwowych. Przem. Chem. w Świecie, 2001, 15.
- 49. Liu Y., Hayakawa T., Tsunoda T., Suzuki K., Hamakawa S., Murata K., Shiozaki R., Ishii T., Kumagai M., 2003. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts. Top. Catal., 22, 205-213. DOI: 10.1023/A:1023519802373.
- 50. Ma J., Sun N., Zhang X., Zhao N., Xiao F., Wei W., Sun Y., 2009. A short review of catalysis for CO2 conversion. Catal. Today, 148, 221-231. DOI: 10.1016/j.cattod.2009.08.015.
- 51. Madej-Lachowska M., 2012. Reforming metanolu parą wodną-Termodynamika, kataliza i kinetyka procesu. Agencja Wydawnicza „ARGI” Wrocław, 1-67.
- 52. Mahdavi V., Peyrovi M.H., Islami M., Mehr J.Y., 2005. Synthesis of higher alcohols from syngas over Cu-Co2O3/ZnO, Al2O3 catalyst. Appl. Catal. A: Gen ., 281, 259-265. DOI: 10.1016/j.apcata.2004.11.047.
- 53. Maniecki T.P., Mierczynski P., Maniukiewicz W., Bawolak K., Gebauer D., Jozwiak W.K., 2009. Bimetallic Au-Cu, Ag-Cu/CrAl3O6 catalysts for mathanol synthesis. Ctal. Lett., 130, 481-488. DOI: 10.1007/s10562-009-9948-4.
- 54. Maniecki T.P., Mierczynski P., Maniukiewicz W., Gebauer D., Jozwiak W.K., 2009. The effect of spinel type support FeAlO3, ZnAl2O4, CrAl3O6 on physicochemical properties of Cu, Ag, Au, Ru supported catalysts for methanol synthesis. Kinet. Catal., 50, 228-234. DOI: 10.1134/S0023158409020128.
- 55. Mao D., Yang W., Xia J., Zhang B., Song Q., Chen Q., 2005. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component. J. Catal., 230, 140-149. DOI: 10.1016/j.jcat.2004.12.007.
- 56. Mastalir A., Frank B., Szizybalski A., Soerijanto H., Deshpande A., Niederberger M., Schomäcker R., Schlögl R., Ressler T., 2005. Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study. J. Catal., 230, 464-475. DOI: 10.1016/j.jcat.2004.12.020.
- 57. Matter P.H., Braden D.J., Ozkan U.S., 2004. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts. J. Catal ., 223, 340-351. DOI: 10.1016/j.jcat.2004.01.031.
- 58. Nakamura J., Choi Y., Fujitani T., 2003. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal., 22, 277-285. 10.1023/A:1023588322846.
- 59. Nowicki L., Ledakowicz S., 1998. „Uwodornienie tlenku węgla do wyższych alkoholi alifatycznych w reaktorze trójfazowym gaz-ciecz-ciało stałe”. Inż. Chem. Proc., 19, 195.
- 60. Oguchi H., Kanai H., Utani K., Matsumura Y., Imamura S., 2005. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Appl. Catal. A: Gen., 293, 64-70. DOI: 10.1016/j.apcata.2005.07.010.
- 61. Oguchi H., Nishiguchi T., Matsumoto T., Kanai H., Utani, K., Matsumura Y., Imamura S., 2005. Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Appl. Catal. A: Gen., 281, 69-73. DOI: 10.1016/j.apcata.2004.11.014.
- 62. Okamoto Y., Fukino K., Imanaka T., Teranishi S., 1984. Synergy between Cu and ZnO for methanol conversions over Cu-ZnO catalysts. Chem. Lett., 1, 71-74.
- 63. Ortelli E.E., Wambach J., Wokaun A., 2001. Methanol synthesis reactions over a CuZr based catalyst investigated using periodic variations of reactant concentrations, Appl. Catal. A: Gen., 216, 227-241. DOI: 10.1016/S0926-860X(01)00569-5.
- 64. Osman A.I., Abu-Dahrieh J.K., Rooney D.W., Halawy S.A., Mohamed M.A., Abdelkader A., 2012. Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Appl. Catal. B: Environ ., 127, 307-315. DOI: 10.1016/j.apcatb.2012.08.033.
- 65. Peppley B.A., Amphlett J.C., Kearns L.M., Mann R.F., 1999. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network. Appl. Catal. A: Gen., 179, 21-29. DOI: 10.1016/S0926-860X(98)00298-1.
- 66. Peter M., Fichtl M.B., Ruland H., Kaluza S, Muhler M., Hinrichsen O., 2012. Detailed kinetic modeling of methanol synthesis over a ternary copper catalyst. Chem. Eng. J., 203, 480-491. DOI: 10.1016/j.cej.2012.06.066.
- 67. Plona J., Śliwa M., Pacuła A., Mucha A., Napruszewska D., Dula R., Grabowski R., Serwicka E.M., 2010. In: Kijeński J., Ściążko M. (Eds.), Studium koncepcyjne wybranych technologii, perspektywicznych procesów i produktów konwersji węgla – osiągnięcia i kierunki badawczo rozwojowe, Tom 2, Synteza produktów chemicznych z gazu ze zgazowania węgla.Wydawnictwo Instytutu Chemicznej Przeróbki Węgla, Zabrze, 62-83.
- 68. Ptaszek A., Grzesik M., Skrzypek J., Madej-Lachowska M., Kulawska M., 2012. Modelowanie i symulacja procesu bezpośredniej syntezy eteru dimetylowego w reaktorze rurowym z hybrydowym złożem katalizatora. Przem. Chem., 91, 1241-1245.
- 69. Royaee S.J., Falamaki C., Sohrabi M., Talesh S.S.A., 2008. A new Langmuir–Hinshelwood mechanism for the methanol to dimethylether dehydration r eaction over clinoptilolite-zeolite catalyst. Appl. Catal. A: Gen., 338, 114-120. DOI: 10.1016/j.apcata.2008.01.011.
- 70. Rozowskij A., Kagan B., 1976. O mechaniźmie syntezy metanolu z dwutlenku węgla i wodoru. 2. Wybór schematu mechanizmu reakcji. Kinetika i Kataliz, XVII, 5, 1314-1320.
- 71. Sá S., Silva H., Brandão L., Sousa J.M., Mendes A., 2010. Catalysts for methanol steam reforming-A review. Appl. Catal. B: Environ., 99, 43-57. DOI: 10.1016/j.apcatb.2010.06.015.
- 72. Samms S.R., Savinell R.F., 2002. Kinetics of methanol-steam reformation in an internal reforming fuel cell. J. Power Sources, 112, 13-29. DOI: 10.1016/S0378-7753(02)00089-7.
- 73. Santiago M., Barbera K., Ferreira C., Curulla-Ferré D., Kolb P., Pérez-Ramírez J., 2012. By-product co-feeding reveals insights into the role of zinc on methanol synthesis catalysts. Catal. Commun., 21, 63-67. DOI: 10.1016/j.catcom.2012.01.031.
- 74. Skrzypek J., Grzesik M., Kulawska M., 2010. In: Kijeński J., Ściążko M. (Eds.), Studium koncepcyjne wybranych technologii, perspektywicznych procesów i produktów konwersji węgla – osiągnięcia i kierunki badawczo rozwojowe, Tom 2, Synteza produktów chemicznych z gazu ze zgazowania węgla. Wydawnictwo Instytutu Chemicznej Przeróbki Węgla, Zabrze, 50-62.
- 75. Skrzypek J., Krupa K., Lachowska M., Kulawska M., 2001. Opracowanie selektywnego katalizatora do syntezy małocząsteczkowych alkoholi alifatycznych. Inż. Chem. Proces., 22, 3E, 1279-1284.
- 76. Skrzypek J., Krupa K., Lachowska M., Moroz H., 2000. Synteza wyższych alkoholi alifatycznych. Zagadnienia doboru katalizatora. Inż. Chem. Proces., 21, 715-724.
- 77. Skrzypek J., Słoczyński J., Ledakowicz S., 1994. Methanol synthesis. PWN, Warszawa.
- 78. Skrzypek J., Lachowska M., Serafin D., 1990. Methanol synthesis from CO 2 and H2: Dependence of equilibrium concentrations of components on the main process variables. Chem. Eng. Sci., 45, 89-96. DOI: 10.1016/0009-2509(90)87083-5.
- 79. Skrzypek J., Lachowska M., Moroz H., 1991. Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalyst. Chem. Eng. Sci ., 46, 2809-2813. DOI: 10.1016/0009-2509(91)85150-V.
- 80. Skrzypek J., Lachowska M., Grzesik M., Słoczyński J., Nowak P., 1995. Thermodynamics and kinetics of low pressure methanol synthesis. Chem. Eng. J ., 58, 101-108.
- 81. Słoczyński J., Grabowski R., Kozłowska A., Lachowska M., Skrzypek J., 2001. Methanol synthesis from CO2 and H2on Cu/ZnO/Al2O3–ZrO2 catalysts. Catalytic activity and adsorption of reactants. Polish J. Chem., 75, 733-742.
- 82. Słoczyński J., Grabowski R., Kozłowska A., Lachowska M., Skrzypek J., 2004. Effect of additives and preparation method on catalytic activity of Cu/ZnO/ZrO2system in the carbon dioxide hydrogenation to methanol. Stud. Surf. Sci. Catal ., 153, 161-164. DOI: 10.1016/S0167-2991(04)80238-6.
- 83. Słoczyński J., Grabowski R., Kozłowska A., Olszewski P., Lachowska M., Skrzypek J., Stoch J., 2003. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2catalysts for the methanol synthesis from CO2. Appl. Catal. A: Gen., 249, 129-138. DOI: 10.1016/S0926-860X(03)00191-1.
- 84. Słoczyński J., Grabowski R., Kozłowska A., Olszewski P., Stoch J., Skrzypek J., Lachowska M., 2004. Catalytic activity of the M/(3ZnO•ZrO2) system (M=Cu, Ag, Au) in the hydrogenation of CO2to methanol. Appl. Catal. A: Gen., 278, 11-23. DOI: 10.1016/j.apcata.2004.09.014.
- 85. Słoczyński J., Grabowski R., Olszewski P., Kozłowska A., Stoch J., Lachowska M., Skrzypek J., 2006. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2catalysts in the synthesis of methanol from CO2and H2. Appl. Catal. A: Gen, 310, 127-137. DOI: 10.1016/j.apcata.2006.05.035.
- 86. Spivey J.J., 2005. Catalysis in the development of clean energy technologies. Catal. Today, 100, 171-180. DOI: 10.1016/j.cattod.2004.12.011.
- 87. Strunk J., Kähler K., Xia X., Comotti M., Schüth F., Reinecke T., Muhler M., 2009. Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies. Appl. Catal. A: Gen., 359, 121-128. DOI: 10.1016/j.apcata.2009.02.030.
- 88. Sugier A., Freund E., 1978. Procédé de fabrication d’alcools et plus particulièrement d’alcools primaires, saturés et linéaires, à partir de gaz de synthèse. FR - patent 2 369 234.
- 89. Sugier A., Freund E., 1980. Procédé de fabrication d’alcools et plus particulièrement d’alcools primaires, saturés et linéaires, à partir de gaz de synthèse. FR - patent 2 444 654.
- 90. Sun K., Lu W., Qiu F., Liu S., Xu X., 2003. Direct synthesis of DME over bifunctional catalyst: surface properties and catalytic performance. Appl. Catal A: Gen., 252, 243-249. DOI: 10.1016/S0926-860X(03)00466-6.
- 91. Sun X., Roberts G.W., 2003. Synthesis of higher alcohols in a slurry reactor with cesium-promoted zinc chromite catalyst in decahydronaphthalene. Appl. Catal. A: Gen., 247, 133-142. DOI: 10.1016/S0926-860X(03)00093-0.
- 92. Surisetty V.R., Dalai A.K., Kozinski J., 2011. Alcohols as alternative fuels: An overview. Appl. Catal. A: Gen., 404, 1-11. DOI: 10.1016/j.apcata.2011.07.021.
- 93. Surisetty V.R., Eswaramoorthi I., Dalai A.K., 2012. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali modified MoS2 catalysts promoted with group VIII metals. Fuel, 96, 77-84. DOI: 10.1016/j.fuel.2011.12.
- 94. Suwa Y., Ito S.-I., Kameoka S., Tomishige K., Kunimori K., 2004. Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl. Catal. A: Gen., 267, 9-16. DOI: 10.1016/j.apcata.2004.02.016.
- 95. Takezawa N., Iwasa N., 1997. Steam reforming and dehydrogenation of methanol: Difference in the catalytic function of copper and group VIII metals. Catal. Today, 36, 45-56. DOI: 10.1016/S0920-5861(96)00195-2.
- 96. Tan Y., Xie H., Cui H., Han Y., Zhong B., 2005. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase. Catal. Today, 104, 25-29. DOI: 10.1016/j.cattod.2005.03.033.
- 97. Travalloni L., Gomes A.C.L., Gaspar A.B., da Silva M.A. P., 2008. Methanol conversion over acid solid catalysts. Catal. Today, 133-135, 406-412. DOI: 10.1016/j.cattod.2007.12.060.
- 98. US 6 605 749, 12.08.2003. Formulation of zeolite catalysts containing recycled material. US 7 241 713, 10.07.2007. Strong SAPOs. US 7 241 716, 10.07.2007. Protecting active sites in SAPOs.
- 99. Vishwanathan V., Jun K.-W., Kim J.-W., Roh H.-S., 2004. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts. Appl. Catal A: Gen., 276, 251-255. DOI: 10.1016/j.apcata.2004.08.011.
- 100. Wambach J., Baiker A., Wokaun A., 1999. CO2 hydrogenation over metal/zirconia catalysts. Phys. Chem. Chem. Phys., 1, 5071-5080. DOI: 10.1039/A904923A.
- 101. Wang G., Zuo Y., Han M., Wang J., 2010. Copper crystallite size and methanol synthesis catalytic property of Cu-based catalysts promoted by Al, Zr and Mn. Reac. Kinet. Mech. Cat., 101, 443-454. DOI: 10.1007/s11144-010-0240-9.
- 102. Wang N., Fang K., Lin M., Jiang D., Li D., Sun Y., 2010. Synthesis of higher alcohols from syngas over Fe/K/β-Mo2C catalyst. Catal. Lett., 136, 9-13. DOI: 10.1007/s10562-010-0288-1.
- 103. Waugh K.C., 2012. Methanol synthesis. Catal. Lett., 142, 1153-1166. DOI: 10.1007/s10562-012-0905-2.
- 104. Wu G.-S., Mao D.-S., Lu G.-Z., Cao Y., Fan K.-N., 2009. The role of the promoters in Cu based catalysts for methanol steam reforming. Catal. Lett., 130, 177-184. DOI: 10.1007/s10562-009-9847-8.
- 105. Xiang M., Li D., Xiao H., Zhang J., Li W., Zhong B., Sun Y., 2008. K/Ni/b-Mo2C: A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation. Catal. Today, 131, 489-495. DOI: 10.1016/j.cattod.2007.10.083.
- 106. Xiaoding X., Doesburg E.B.M., Scholten J.J.F., 1987. Synthesis of higher alcohols from syngas - recently patented catalysts and tentative ideas on the mechanism. Catal. Today, 2, 125-170. DOI: 10.1016/0920-5861(87)80002-0.
- 107. Yang X., Zhu X., Hou R., Zhou L., Su Y., 2011. The promotion effects of Pd on Fe-Cu-Co based catalyst for higher alcohols synthesis. Fuel Process. Technol ., 92, 1876-1880. DOI: 10.1016/j.fuproc.2011.05.003.
- 108. Yao Ch.-Z., Wang L.-C., Liu Y.-M., Wu G.-S., Cao Y., Dai W.-L., He H.-Y., Fan K.-N., 2006. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl. Catal. A: Gen., 297, 151-158. DOI: 10.1016/j.apcata.2005.09.002.
- 109. Yoo K.S., Kim J.-H., Park M.-J., Kim S.-J., Joo O.-S., Jung K.-D., 2007. Influence of solid acid catalyst on DME production directly from synthesis gas over the admixed catalyst of Cu/ZnO/Al2O3 and various SAPO catalysts. Appl. Catal A: Gen., 330, 57-62. DOI: 10.1016/j.apcata.2007.07.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3287a357-0fb9-47f7-b4a9-942dff13dbcb