CAMERA SEPARATORIA previously POSTĘPY CHROMATOGRAFII

Volume 3, Number 1 / June 2011, 103-114

Piotr M. SŁOMKIEWICZ Zakład Fizyki Chemicznej, Instytut Chemii, Uniwersytet Jana Kochanowskiego, ul. Świętokrzyska 15 G, 25-406 Kielce e-mail: *piotr.slomkiewicz@ujk.edu.pl*

Zastosowanie inwersyjnej chromatografii gazowej w badaniach koadsorpcji – adsorpcja metanolu na Amberlyście 15

The application inverse gas chromatography in coadsorption investigations – the adsorption of methanol on Amberlyst 15

Streszczenie: Opisano aparaturę do dozowania różnej wielkości próbki dwóch adsorbatów do pomiarów koadsorpcji. Pomiary koadsorpcji wykonano dla metanolu na powierzchni sulfonowanego kopolimeru styrenowo-diwinylobenzenowego Amberlyst 15 pokrytej zaadsorbowaną wodą. Wyznaczono stałe równowagi i entalpie adsorpcji.

Słowa kluczowe: aparatura pomiarowa, koadsorpcja, metanol, Amberlyst 15

Abstract: The apparatus for dosage different size of sample of two adsorbatesforcoadsorption measurementswas described. The measurements were executed for methanol coadsorption on the surface of sulfonated styrene-divinylobenzenecopolymerAmberlyst 15 covered with adsorbed water. The equilibrium constants and enthalpies of adsorptionwere determined.

Key words: measurement apparatus, coadsorption, methanol, Amberlyst 15

1. Wstęp (Introduction)

W artykule [1] opisano dozownik chromatograficzny z dwiema komorami dozymetrycznymi do pomiarów koadsorpcji metodą inwersyjnej chromatografii gazowej. Zastosowane rozwiązanie konstrukcyjne dozownika polegało na zmianie długości przewodu gazowego łączącego dwie komory dozymetryczne, co umożliwiało wykonanie pomiaru w taki sposób, że pierwszy adsorbat był adsorbowany na adsorbencie w kolumnie chromatograficznej, a następnie na powierzchnię adsorbentu pokrytą pierwszym adsorbatem wprowadzano drugi adsorbat w możliwym do wyznaczenia czasie dozowania.

W przypadku silnej adsorpcji jednego z adsorbatów metoda takiego pomiaru może sprawiać trudności z określeniem stopnia pokrycia po-

wierzchni adsorbentu zaadsorbowanym związkiem chemicznym. Taki przypadek może zachodzić w trakcie badania adsorpcji silnie polarnych związków chemicznych przez sulfonowane kopolimery styrenowo-diwinylobenzenowe.

Do grup sulfonowych w kopolimerze mogą się przyłączać różne ilości cząsteczek wody (rys. 1) [2, 3]. W skrajnym przypadku grupy sulfonowe mogą być rozdzielone przez wiele cząsteczek wody, a przy znacznym nadmiarze, woda może wypełniać pory kopolimeru. Woda kondensująca w kapilarach, bezpośrednio nie jest związana z poszczególnymi grupami sulfonowymi. Podobnie może się zachowywać cząsteczka alkoholu. Powstają, bowiem wiązania pomiędzy grupą hydroksylową alkoholu i grupą sulfonową kopolimeru (struktura I, rys. 2), która jest podobna do struktury częściowo uwodnionych grup sulfonowych (rys. 1). Cząsteczka alkoholu może tworzyć poprzez grupę hydroksylową dwa wiązania wodorowe z grupami sulfonowymi natomiast cząsteczka wody może tworzyć trzy takie wiązania [4, 5].

W niniejszym artykule opisano metodę dozowania różnej wielkości próbki dwóch adsorbatów. Jeden z nich jest dozowany metodą przepływową i jest adsorbowany na sorbencie, natomiast drugi wprowadzony w formie impulsu oddziałuje z grupami aktywnymi sorbentu i zaadsorbowanym przez nie pierwszym adsorbatem. Pomiar adsorpcji może być wykonywany na czystej powierzchni adsorbentu jak i na powierzchni adsorbentu pokrytej adsorbatem. Zastosowane rozwiązanie konstrukcyjne wymagające użycia dwóch niezależnie pracujących detektorów, jednego w celu określenia stężenia zaadsorbowanego adsorbatu na powierzchni adsorbentu i drugiego do określenia powierzchni piku chromatograficznego.

Zastosowano metodę obliczania wielkości adsorpcji i ciśnienia parcjalnego adsorbatów zmodyfikowaną w pracy [6], tak, aby wzory stosowane do tych obliczeń uwzględniły komputerową metodę określania powierzchni piku chromatograficznego [7].

Pomiary koadsorpcji wykonano dla metanolu na powierzchni adsorbatu pokrytej zaadsorbowaną wodą. Jako adsorbentu użyto sulfonowanego kopolimeru styrenowo-diwinylobenzenowego o symbolu Amberlyst 15.

Rys. 1. Schemat hydratacji grup sulfonowych kopolimeru *Fig.1. Scheme hydration of sulfonic groups of copolymer*

Rys. 2. Schemat wiązania cząsteczek alkoholu przez grupy sulfonowe kopolimeru *Fig. 2. Scheme of bonding the alcohols molecules by sulfonic groups of copolymer*

2. Część eksperymentalna (Experimental)

Opis aparatury (*Apparatus*)

Na rysunkach 3-5 przedstawiono wybrane elementy aparatury badawczej. Schemat instalacji gazowej i elektrycznej odparowalnika przedstawiono na rysunku 3. Odparowalnik 1 ogrzewa grzałka elektryczna 2, która znajduje się na jego bocznej płaszczyźnie. Grzałka jest zasilana z regulatora temperatury 3. Wewnątrz odparowalnika znajduje się wężownica 4, którą przepływa ciecz ogrzewana i termostatowana przez ultratermostat 5. Taki sposób ogrzewania i termostatowania odparowalnika oraz znajdującego się w nim ciekłego substratu pozwala osiągnąć znaczną stabilność temperaturowa układu. Miernik temperatury 6 i termopara 7 służa do pomiaru temperatury cieczy we wnętrzu odparowalnika. Na płaszczyźnie bocznej odparowalnika zamontowano wskaźnik poziomu cieczy 8. Zawór 9 służy do napełniania odparowalnika cieczą, a do jego opróżniania służy zawór 10. Odparowalnik poprzez system dwóch zaworów sześciodrożnych 11 i 12 jest połaczony z gazowym torem głównym i gazowym torem pomocniczym Zastosowane zawory sześciodrożne mają zmodyfikowaną konstrukcję, której istota polega na wykonaniu korpusu zaworu sześciodrożnego w postaci prostopadłościanu o kwadratowej podstawie i umieszczeniu gniazd przyłączy gazowych na wszystkich czterech płaszczyznach bocznych. Ułatwia to łączenie zaworów sześciodrożnych w zespoły. Dwa połączone ze sobą zawory sześciodrożne, umożliwiają wykonywanie następujących czynności:

- 1. odłączenie odparowalnika od obu torów gazowych,
- 2. przyłączenie odparowalnika do toru gazu pomocniczego,
- 3. przyłączenie odparowalnika do głównego toru gazowego.

Zastosowanie toru gazu pomocniczego, z takim samym gazem nośnym jak w torze głównym, pozwala na wykonywanie operacji dodatkowych, na przykład przepłukiwanie odparowalnika czystym gazem nośnym w celu usunięcia powietrza z jego wnętrza, które zwykle dostaje się do niego w trakcie napełniania. Unika się w ten sposób zanieczyszczania toru głównego, który jest bezpośrednio połączony z układem pomiarowym. Gaz nośny (rys. 3) z zaworów sześciodrożnych 11 i 12, przez zbiornik bezpieczeństwa, jest skierowany do wlotu 14 odparowalnika 1 i wraz z parami substratu przez wylot 15 może być skierowany przez zawory 11 i 12 do toru głównego. Wszystkie elementy instalacji gazowej, przez które przepływa gaz nośny z parami adsorbatu, są ogrzewane i termostatowane w celu uniknięcia kondensacji par na ich ściankach wewnętrznych.

Na rys. 4 przedstawiono schemat instalacji do badania koadsorpcji metodą inwersyjnej chromatografii gazowej. W jej skład wchodzi sześć torów gazowych A, B, C, D i E. W każdym z nich, przepływ gazu jest włączany elektrozaworem 1, a jego przepływ reguluje się za pomocą stabilizatora przepływu 2 i zaworu iglicowego 3. Tor gazu A służy do dozowania par ciekłego adsorbatu podłączonej przez zespół trzech zaworów sześciodrożnych 5, 6, 7 i rurki sorpcyjnej 8. Tor gazu B jest torem gazowym pomocniczym, a jego zastosowanie opisano powyżej. Rurka sorpcyjna 8 poprzez zawór sześciodrożny 8 jest zasilana z toru gazowego C lub z toru gazowego E z komorą dozymetryczną 9. Tory gazowe C i E zasilają dwa detektory cieplnoprzewodnościowe 10 i 11. Komory porównawcze detektorów 10 i 11 są zasilane gazem z toru D i F. Sygnały elektryczne z detektorów 10 i 11 wzmacniane w zasilaczach detektory cieplnoprzewodnościowe 12 i 13 są przekształcane w postać cyfrową w przetworniku analogowo-cyfrowym 14 i zapisywane w komputerze 15.

- Rys. 3. Schemat połączeń gazowych i elektrycznych odparowalnika
- Fig. 3. Scheme of gaseous and electric connections of evaporator
 - 1 odparowalnik, 2 grzejnik elektryczny, 3 regulator temperatury, 4 wężownica, 5 – ultratermostat, 6 – miernik temperatury, 7 – termopara, 8 – wskaźnik poziomu cieczy, 9 – zawór do napełniania, 10 – zawór spustowy, 11, 12, – zawór sześciodrożny, 13 – zbiornik bezpieczeństwa, 14 – wlot gazu nośnego, 15 – wylot gazu nośnego z parami ciekłego substratu, 16, 17 – zawór odpowietrzający

- Rys. 4. Schemat aparatury do pomiarów koadsorpcji metodą inwersyjnej chromatografii gazowej
- Fig. 4. Scheme of apparatus for coadsorption measurement by inverse gas chromatography method

1 – zawór elektromagnetyczny 2 – stabilizator przepływu, 3 – zawór iglicowy, 4, 5, 6, 7 – zawór sześciodrożny, 8 – rurka sorpcyjna, 9 – komora dozownicza, 10, 11 – detektor cieplnoprzewodnościowy, 12, 13 – wzmacniacz, 14 – przetwornik analogowo-cyfrowy, 15 – komputer

A, B, C, D, E, F – tor gazowy

Zespół zaworów sześciodrożnych 5, 6, 7 z rurką sorpcyjną 8 ma cztery położenia robocze. W pierwszym (rys. 5 I) tor gazu A doprowadzający pary ciekłego adsorbatu jest odłączony od rurki sorpcyjnej i gazy z toru C i E zasilają detektory cieplnoprzewodnościowe 10 i 11. W pozycji II przez rurkę sorpcyjną 9 z gazem nośnym przepływają pary adsorbatu. W pozycji III tor gazu E jest połączony z komorą dozymetryczną i rurką sorpcyjną oraz detektorem cieplnoprzewodnościowym 11. Próbka drugiego adsorbatu wprowadzona do komory dozymetrycznej przepływa przez rurkę sorpcyjna zawierającą czysty adsorbent lub adsorbent z zaadsorbowanym pierwszym adsorbatem. Jest możliwe wykonywanie pomiarów adsorpcyjnych na czystym adsorbencie lub pomiarów koadsorpcji drugiego adsorbatu na adsorbencie z zaadsorbowanym pierwszym adsorbatem. W pozycji IV tor gazu C jest połączony z rurką sorpcyjną i z detektorem cieplnoprzewodnościowym 10. Wówczas jest możliwe określanie stężenia pierwszego adsorbatu na wylocie rurki sorpcyjnej. Pomiar ten może służyć do określania ilości moli zaadsorbowanego adsorbatu w trakcie ogrzewania rurki sorpcyjnej celem jego termodesorpcji.

- Rys. 5. Schemat połączeń gazowych zaworów sześciodrożnych
- Fig. 5. Scheme of gas connections between six port valves

Pozycja: I – rurka sorpcyjna odłączona, II – przepływ par adsorbatu przez rurkę sorpcyjną, III - rurka sorpcyjna połączona z torem gazowym E, IV - rurka sorpcyjna połączona z torem gazowym C

5, 6, 7 - zawór sześciodrożny, 8 - rurka sorpcyjna,

A, C, E, - tor gazowy

Sposób przeprowadzenia doświadczeń

Właściwości fizykochemiczne sulfonowanego kopolimeru styrenowodiwinylobenzenowego Amberlyst 15 przedstawiono w tabeli 1 [8]. W pracy [9] zaobserwowano także, że pomiary adsorpcji metanolu na Amberlyście 15 można wykonywać do temperatury 333 K. Powyżej tej temperatury powstający eter dimetylowy może zniekształcać pik adsorpcyjny i powodować błędy pomiarowe. Zgodnie z tymi cytowanymi powyżej faktami, pomiary adsorpcji metanolu wykonano w zakresie temperatur 303 – 333 K.

- Tabela 1.
 Właściwości fizykochemiczne sulfonowanego kopolimeru styrenowo-diwinylobenzenowego Amberlyst 15
- **Table 1.** Physicochemical properties of sulfonated styrene-divinylbenzene copolymer Amberlyst 15

Teoretyczna zdol- ność jonowymien- na	Zmierzona zdol- ność jonowymien- na	Powierzchnia wła- ściwa	Stopień usieciowa- nia	Gęstość pozorna*	Gęstość szkieletu polimerowego**	Objętość porów
(mmol/g)	(mmol/g)	(m²/g)	(%wag. DVB)	(g/cm ³)	(g/cm ³)	(cm ³ /g)
4,85	4,40	45	20	1,012	1,513	0,39

* gęstość wyznaczona metodą rtęciową

* * gęstość wyznaczona metodą helową

Rurka sorpcyjna o średnicy wewnętrznej 4 mm i długości 10 cm zawierała 5 g Amberlystu 15. Termostat rurki sorpcyjnej utrzymywał zadaną temperaturę pomiaru ±0,2 °C. Wielkość próbki dozowanego metanolu nie przekraczała wartości 0,5 (stosunek ilości milimoli dozowanego metanolu do całkowitej ilości milimoli grup sulfonowych zawartych w próbce). Złoże Amberlystu 15 nasycano parą wodną w strumieniu helu. Stężenie pary wodnej w helu określano za pomocą detektora cieplnoprzewodnościowego. Ilość zaadsorbowanej pary wodnej w złożu Amberlystu 15 określano metodą termodesorpcji.

Sposób obliczeń powierzchni adsorpcyjnej, powierzchni jej poszczególnych segmentów, powierzchni piku adsorpcyjnego i czasu retencji, zastosowano program Komputerowy System Przetwarzania Danych (KSPD) [7]. Program ten umożliwia wybranie liczby segmentów, na jakie może być podzielona powierzchnia adsorpcyjna. Obliczenia prężności parcjalnej p_{ii} oraz ilość zaadsorbowanego adsorbatu a_{ii} wykonywano na podstawie danych podziału profilu piku zestawionych w bazie danych programu KSPD. Do obliczeń użyto programu Origin Microcal [10].

3. Wyniki i dyskusja (Results and discussion)

W tabeli 2 zestawiono wartości stałych równowagi adsorpcji metanolu na bezwodnym Amberlyście 15, wyznaczone doświadczalnie i z danych literaturowych. W obu przypadkach te wyniki są porównywalne. Stałe równowagi adsorpcji i koadsorpcji metanolu $K_{\rm M}$ na bezwodnym i uwodnionym sulfonowanym kopolimerze Amberlyst 15 (o stosunku całkowitej liczby milimoli grup sulfonowych w próbce Amberlystu 15 do liczby milimoli zaadsorbowanej wody) przedstawiono w tabeli 3. Wartości stałych równowag koadsorpcji metanolu maleją w miarę wzrostu liczby moli zaadsorbowanej wody. Wynika z niej, że w miarę zwiększania ilości zaadsorbowanej wody przez grupy sulfonowe kopolimeru zmniejsza się jego zdolność sorpcyjna metanolu, co jest zgodne w proponowanymi modelami adsorpcji cząsteczek wody i alkoholu przez grupy sulfonowe (rys. 1 i 2).

- **Tabela 2.** Porównanie wartości stałych równowagi adsorpcji metanolu $K_{\rm M}$ na bezwodnym sulfonowanym kopolimerze Amberlyst 15 z danymi literaturowymi
- **Table 2.** The comparison the values adsorption equilibrium constants of
methanol K_M on anhydrous sulfonic copolymer Amberlyst 15 with
literature data

	wyniki pomiarów	dane literaturowe [6]	dane literaturowe [1]
<i>T</i> (K)		10 ⁻² × <i>K</i> _M (kPa ⁻¹)	
303	94,40	95,21	94,22
313	60,81	62,75	60,67
323	37,12	39,29	38,54
333	22,43	25,15	26,01

1:1,5 mmol_{SO3H}/mmol_{H20} zmniejsza się od –43,5 kJ/mol do –54,2 kJ/mol. Poprawność wykonanych pomiarów i obliczeń określono stosując reguły Boudarta [11]. Z tego zestawienia wynika, że obliczone z wyznaczonych entalpii adsorpcji, entropia adsorpcji metanolu spełnia wszystkie trzy reguły.

- **Tabela 3.** Stałe równowagi adsorpcji i koadsorpcji metanolu $K_{\rm M}$ na bezwod-
nym i uwodnionym sulfonowanym kopolimerze Amberlyst 15
- **Table 3.** The adsorption and coadsorption equilibrium constants of methanol K_M on anhydrous and hydrated sulfonic copolymer Amberlyst 15

	Amberlyst 15 bezwodny	Amberlyst 15 [mmol _{SO3H} /mmol _{H20}] 1:0,5	Amberlyst 15 [mmol _{SO3H} /mmol _{H20}] 1:1	Amberlyst 15 [mmol _{SO3H} /mmol _{H20}] 1:1,5		
<i>T</i> (K)	10 ⁻² ×K _M (kPa ⁻¹)					
303	94,40	73,11	61,37	56,23		
313	60,81	52,84	41,97	32,50		
323	37,12	31,62	24,54	18,19		
333	22,43	15,10	11,40	7,65		

- Tabela 4.Weryfikacja za pomocą reguł Boudarta wyznaczonych wartości
entalpii adsorpcji i koadsorpcji metanolu na kopolimerze Amber-
lyst 15
- **Table 4.**Verification of adsorption and coadsorption enthalpy for methanol
on copolymer Amberlyst 15 using Boudart'sRules

	Amberlyst 15 bezwodny	Amberlyst 15 [mmol _{SO3H} /mmol _{H20}] 1:0,5	Amberlyst 15 [mmol _{SO3H} /mmol _{H20}] 1:1	Amberlyst 15 [mmol _{SO3H} /mmol _{H20}] 1:1,5	
Entalpia adsorpcji Δ <i>H</i> _a (kJ/mol)	-39,7	-43,5	-46,6	-54,2	
Standardowa entropia adsorpcji ΔS^0_a (J/mol K ¹)	-92,8	-110,7	-121,8	-150,0	
Standardowa entropia ^a S^0_{298} (J/mol K)	237,4	237,4	237,4	237,4	
Reguły Boudarta ^b					
$\Delta S_a^0 < 0$	-22,2 <0	-26,5<0	-29,1<0	-35,9<0	
$\left \Delta S_a^0\right < S_{298}^0$	–22,2 <56,8	-26,5 <56,8	-29,1 <56,8	-35,9 <56,8	
$\left \Delta S_{a}^{0}\right > 10$	-22,2 >10	–26,5 >10	-29,1 >10	-35,9 >10	

^a - źródło danych Centrum Danych Termodynamicznych, Instytut Chemii Fizycznej, Warszawa,
 ^b - wartości entalpii adsorpcji obliczono w cal/mol, a wartości entropii adsorpcji w cal/mol K
 Wyznaczona entalpia adsorpcji i na jej podstawie entropia adsorpcji mogą wskazywać na poprawność pomiarów, o ile spełniają reguły Boudarta [11]

1. Wartość entropii adsorpcji musi być ujemna: $\Delta S_a^0 < 0$

ponieważ entropia cząsteczki maleje wraz ze zmniejszaniem się liczby stopni swobody w trakcie procesu adsorpcji.

 Bezwzględna wartość entropii adsorpcji (przeliczona do warunków standardowych) musi być mniejsza niż wartość standardowej entropii tworzenia cząsteczki:

$$\Delta S_a^0 \left| < S_{298}^0 \right|$$

ponieważ podczas adsorpcji, cząsteczka nie może zmniejszyć wartości entropii o więcej niż wynosi wartość bezwzględnej entropii jej tworzenia.

 Bezwzględna wartość entropii adsorpcji (przeliczona do warunków standardowych) musi być większa niż 10 cal mol⁻¹K⁻¹:

$$\Delta S_a^0 > 10$$

Zależność ta wynika ze zmiany objętości molowej (v_g) cząsteczek w fazie gazowej kondensujących na powierzchni adsorbentu i zajmujących objętość równą objętości krytycznej v_c . Zmiana entropii jest równa:

$$\Delta S_a^0 = -R \ln \left(\frac{v_g}{v_c} \right) \cong -10 \text{ (cal mol^{-1} K^{-1})}$$

3. Podsumowanie (Conclusions)

Zastosowane rozwiązanie konstrukcyjne aparatury do pomiaru koadsorpcji i opracowana metoda pomiarowa umożliwia wykonywanie pomiarów adsorpcji i koadsorpcji metodą inwersyjnej chromatografii gazowej, co wykazano w niniejszej pracy na przykładzie adsorpcji i koadsorpcji metanolu na bezwodnym i uwodnionym sulfonowanym kopolimerze Amberlyst 15.

Literatura *(Literature)*

- P.M. Słomkiewicz, Zastosowanie inwersyjnej chromatografii gazowej w badaniach koadsorpcji, Postępy chromatografii, praca zbiorowa red. B. Głód, monografie nr 122, Wydawnictwo Akademii Podlaskiej, Siedlce 2010.
- 2. N.G. Polyanskii, K.V. Sapozhnikov, *New Advances in Catalysis by Ion Exchange Resins,* Russ. Chem. Rev., **46**(1977)226-245.
- 3. E. Knözinger, H. Noller, *IR-Untersuchungen der anlagerung von ameisensäure an die SO₃H-gruppen des ionenaustauschers polystyrolsulfonsäure*, Z. Phys. Chem. (Frankfurt), **55**(1967)59-71.
- 4. N. Bothe, F. Doscher, F. Klein, H. Widdecke, *Thermal stability sulphonated styrene-divinylbenzene resins*, Polymer, **20**(1979)850-854.

- 5. P.E. Tulupov, A.M. Butaev, V.P. Greben, A.I. Kasperovich, *Kinetics of the detachment of functional groups from ion exchangers*, Russ. J. Phys. Chem., **47**(1973)81-83.
- 6. P.M. Słomkiewicz, *Determination of adsorption equilibrium of alcohols and alkenes on a sulfonated styrene divinylbenzene copolymer,* Adsorption Science & Technology, **24/3**(2006)239-256,
- 7. A. Lech, Program komputerowy KSPD, Metroster, Toruń 1999.
- 8. R. Kunin, E. Meitzner, J. Oline, S.A. Fisher, *Characterization of Amberlyst 15*, Ind. Eng. Chem. Prod. Res.Dev., **1**(1962)140-144.
- 9. P.M. Słomkiewicz, Zastosowanie chromatografii gazowej w badaniach kinetyki katalitycznej syntezy eterów z alkenów i alkoholi, (monografia) Wydawnictwo Akademii Świętokrzyskiej, Kielce 2007.
- 10. Origin User's Manual, Microcal Software. Inc., Northampton MA, USA, 1997.
- 11. M. Boudart, D.E. Mears, M.A. Vannice, *Kinetics of heterogeneous catalytic reactions*, Ind. Chim. Belge 32 Special No, **1**(1967)281-284.