PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of Microstructure and Mechanical Properties of Inconel 625 Alloy by Wire Arc Additive Manufacturing (WAAM)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An arc is used as a heat source in the manufacturing process known as wire arc additive manufacturing (WAAM), which uses layer-by-layer cladding to fuse wire. In the current work, Wire Arc Additive Manufacturing (WAAM)-fabricated Inconel 625 alloy has been examined. The research was done on the microstructure, mechanical characteristics, and impact of the solidification rate on the characteristics of the manufactured specimens for the Inconel 625 alloy. Microstructural analysis has shown that the specimen’s layers have varying microstructures. The bottom layer exhibits a blocky or equiaxed microstructure because of the faster solidification rate, while the upper zone generated elongated and discontinuous dendrites because of the slower solidification rate. This difference in the microstructure in the top and bottom zones directly influence the ultimate tensile strength, where the bottom zone has more tensile and yield strength than the top zone. Also, the presence of cracks in the top zone, which is found during the fractography test, also correlated the top zone’s ultimate tensile strength.
Twórcy
  • PSG College of Technology, Department of Production Engineering, Coimbatore-641004, India
autor
  • PSG College of Technology, Department of Production Engineering, Coimbatore-641004, India
autor
  • PSG College of Technology, Department of Production Engineering, Coimbatore-641004, India
autor
  • PSG College of Technology, Department of Production Engineering, Coimbatore-641004, India
  • PSG College of Technology, Department of Production Engineering, Coimbatore-641004, India
Bibliografia
  • [1] H.D. Nguyen, A. Pramanik, A.K. Basak, Y. Dong, C. Prakash, S. Debnath, D. Buddhi, A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. Journal of Materials Research and Technology 18, 4641-4661 (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.04.055
  • [2] M.E. Korkmaz, S. Waqar, A. Garcia-Collado, M.K. Gupta, G.M. Krolczyk, “A technical overview of metallic parts in hybrid additive manufacturing industry,” Journal of Materials Research and Technology, (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.02.085
  • [3] Z. Pan, D. Ding, B. Wu, D. Cuiuri, H. Li, J. Norrish, Arc welding processes for additive manufacturing: a review. Transactions on Intelligent Welding Manufacturing, 3-24 (2018). DOI: https://doi.org/10.1007/978-981-10-5355-9_1
  • [4] M. Chintala, T. Kumar, M. Sathishkumar, N. Arivazhagan, M. Manikandan, Technology development for producing Inconel 625 in aerospace application using wire arc additive manufacturing process. Journal of Materials Engineering and Performance 30, 7, 5333-5341 (2021). DOI: https://doi.org/10.1007/11665-021-05781-6
  • [5] M. Owais, J. Mridul, W. Noor, N.H., Wire Arc Additive Manufacturing (WAAM) of Inconel 625 alloy and its Microstructure and Mechanical Properties. International Research Journal of Engineering and Technology (IRJET) 8, 2 (2021).
  • [6] H. Geng, J. Li, J. Xiong, X. Lin, F. Zhang, Optimization of wire feed for GTAW based additive manufacturing. Journal of Materials Processing Technology 243, 40-47 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2016.11.027
  • [7] X. Wang, A. Wang, K. Wang, Y. Li, Process stability for GTAW-based additive manufacturing. Rapid Prototyping Journal (2019). DOI: https://doi.org/10.1108/RPJ-02-2018-0046
  • [8] P.P. Thakur, A.N. Chapgaon, A review on effects of GTAW process parameters on weld. International Journal of Research in Aeronautical and Mechanical Engineering 4, 136-140 (2016). DOI: https://doi.org/10.13140/rG.2.2.11535.38569
  • [9] S.P. Kumar, S. Elangovan, R. Mohanraj, J.R. Ramakrishna, A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition. Materials Today: Proceedings 46, 7892-7906 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.02.566
  • [10] O.M. Akselsen, R. Bjørge, H.W. Ånes, X. Ren, B. Nyhus, Microstructure and properties of wire arc additive manufacturing of Inconel 625. Metals 12, 11, 1867 (2022). DOI: https://doi.org/10.3390/met12111867
  • [11] S.S. Kumar, C.B. Maheswaran, T.D.B. Kannan, Experimental investigation on a pulsed TiG welding of Inconel 625. Materials Today: Proceedings 45, 2109-2114 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.09.724
  • [12] C. Guo, M. Ying, H. Dang, R. Hu, F. Chen, Microstructural and intergranular corrosion properties of Inconel 625 superalloys fabricated using wire arc additive manufacturing. Materials Research Express 8, 3, 035103 (2021). DOI: https://doi.org/10.1088/2053-1591/abe977
  • [13] S. Mohan Kumar, A. Rajesh Kannan, N. Pravin Kumar, R. Pramod, N. Siva Shanmugam, A.S. Vishnu, S.G. Channabasavanna, Microstructural features and mechanical integrity of wire arc additive manufactured SS321/Inconel 625 functionally gradient material. Journal of Materials Engineering and Performance 30, 8, 5692-5703 (2021). DOI: https://doi.org/10.1007/11665-021-05617-3
  • [14] G. Ravi, N. Murugan, R. Arulmani, Microstructure and mechanical properties of Inconel-625 slab component fabricated by wire arc additive manufacturing. Materials Science and Technology 36, 16, 1785-1795 (2020). DOI: https://doi.org/10.1080/02670836.2020.1836737
  • [15] E. Karayel, Y. Bozkurt, Additive manufacturing method and different welding applications. Journal of Materials Research and Technology 9, 5, 11424-11438 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.08.039
  • [16] G.N. Ahmad, M.S. Raza, N.K. Singh, H. Kumar, Experimental investigation on Ytterbium fiber laser butt welding of Inconel 625 and Duplex stainless steel 2205 thin sheets. Optics and Laser Technology 126, 106117 (2020).
  • [17] J. Sivakumar, M. Vasudevan, N.N. Korra, Systematic welding process parameter optimization in activated tungsten inert gas (A-TIG) welding of Inconel 625. Transactions of the Indian institute of Metals 73, 3, 555-569 (2020). DOI: https://doi.org/10.1016/j.optlastec.2020.106117
  • [18] V. Dhinakaran, J. Ajith, A.F.Y. Fahmidha, T. Jagadeesha, T. Sathish, B. Stalin, Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys - A review. Materials Today: Proceedings 21, 920-925 (2020). DOI: https://doi.org/10.1016/j.matpr.2019.08.159
  • [19] H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. Journal of Materials Science and Technology 34, 10, 1799-1804 (2018).
  • [20] F.E. Bock, J. Herrnring, M. Froend, J. Enz, N. Kashaev, B. Klusemann, Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys. Journal of Manufacturing Processes 64, 982-995 (2021). DOI: https://doi.org/10.1016/j.jmapro.2021.02.016
  • [21] F. Montevecchi, G. Venturini, N. Grossi, A. Scippa, G. Campatelli, Heat accumulation prevention in wire-arc-additive-manufacturing using air jet impingement. Manufacturing Letters 17, 14-18 (2018).
  • [22] Y. Shen, J. Liu, S. Yang, B. Yan, Y. He, H. Liu, H. Xu, Dendrite growth behavior in directionally solidified Fe-C-Mn-Al alloys. Journal of Crystal Growth 511, 118-126 (2019).
  • [23] L. Karlsson, E.L. Bergquist, S. Rigdal, N. Thalberg, in: T. Böllinghaus, H. Herold, C.E. Cross, J.C. Lippold (eds), Evaluating Hot Cracking Susceptibility of Ni-Base SAW Consumables for Welding of 9% Ni Steel. Hot Cracking Phenomena in Welds II, Springer, Berlin, Heidelberg, (2008). DOI: https://doi.org/10.1007/978-3-540-78628-3_17
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3275b140-5852-4c05-b66b-422d334cfbe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.