PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of uninorms to aggregate uncertainty from many classifiers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this contribution we want to present the concept of uncertainty area of classifiers and an algorithm that uses uninorms to minimize the area of uncertainty in the pre‐ diction of new objects by complex classifiers.
Twórcy
  • University of Rzeszów, College of Natural Sciences, Institute of Information Technology, ul. Pigonia 1, 35‑310 Rzeszów, Poland
autor
  • University of Rzeszów, College of Natural Sciences, Institute of Information Technology, ul. Pigonia 1, 35‑310 Rzeszów, Poland
autor
  • University of Rzeszów, College of Natural Sciences, Institute of Information Technology, ul. Pigonia 1, 35‑310 Rzeszów, Poland
  • University of Rzeszów, College of Natural Sciences, Institute of Information Technology, ul. Pigonia 1, 35‑310 Rzeszów, Poland
Bibliografia
  • [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press: New York, 1966.
  • [2] C. Alsina, M. J. Frank, and B. Schweizer, Associative Functions: Triangular Norms and Copulas, World Scientific: New Jersey, 2006, 10.1142/6036.
  • [3] J. G. Bazan. “Hierarchical Classifiers for Complex Spatio‑temporal Concepts”. In: J. F. Peters, A. Skowron, and H. Rybiński, eds., Transactions on Rough Sets IX, Lecture Notes in Computer Science, 474–750. Springer, Berlin, Heidelberg, 2008.
  • [4] J. G. Bazan and M. Szczuka, “The Rough Set Exploration System”. In: J. F. Peters and A. Skowron, eds., Transactions on Rough Sets III, Berlin, Heidelberg, 2005, 37–56, 10.1007/11427834_2.
  • [5] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions: A Guide for Practitioners, Springer: Berlin, New York, 2008.
  • [6] T. Calvo, A. Kolesá rová , M. Komornı́ková , and R. Mesiar. “Aggregation Operators: Properties, Classes and Construction Methods”. In: T. Calvo, G. Mayor, and R. Mesiar, eds., Aggregation Operators: New Trends and Applications, Studies in Fuzziness and Soft Computing, 3–104. Physica‑Verlag HD, Heidelberg, 2002.
  • [7] T. Calvo and G. Mayor, “Remarks on two types of extended aggregation functions”, Tatra Mountains Mathematical Publications, vol. 16, 1999, 235–253.
  • [8] T. Calvo, G. Mayor, and R. Mesiar, eds., Aggregation Operators: New Trends and Applications, Studies in Fuzziness and Soft Computing, Physica‑Verlag Heidelberg, 2002, 10.1007/978‑3‑7908‑1787‑4.
  • [9] T. Cover and P. Hart, “Nearest neighbor pattern classification”, IEEE Transactions on Information Theory, vol. 13, no. 1, 1967, 21–27,10.1109/TIT.1967.1053964, Conference Name: IEEE Transactions on Information Theory.
  • [10] B. De Baets, “Idempotent uninorms”, European Journal of Operational Research, vol. 118, no. 3, 1999, 631–642, 10.1016/S0377‑2217(98)00325‑7.
  • [11] J. Dombi, “Basic concepts for a theory of evaluation: The aggregative operator”, European Journal of Operational Research, vol. 10, no. 3, 1982, 282–293, 10.1016/0377‑2217(82)90227‑2.
  • [12] P. Drygaś, “On the structure of continuous uninorms”, Kybernetika, vol. 43, no. 2, 2007, 183–196.
  • [13] P. Drygaś, “On properties of uninorms with underlying t‑norm and t‑conorm given as ordinal sums”, Fuzzy Sets and Systems, vol. 161, no. 2, 2010, 149–157, 10.1016/j.fss.2009.09.017.
  • [14] P. Drygaś, D. Ruiz‑Aguilera, and J. Torrens, “A characterization of a class of uninorms with continuous underlying operators”, Fuzzy Sets and Systems, vol. 287, 2016, 137–153, 10.1016/j.fss.2015.07.015.
  • [15] P. Drygas, “On monotonic operations which are locally internal on some subset of their domain”. In: New Dimensions in Fuzzy Logic and Related Technologies, Proceedings of the 5th EUSFLAT Conference, 2007, 185–191.
  • [16] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, vol. 27, no. 8, 2006, 861–874, 10.1016/j.patrec.2005.10.010.
  • [17] J. Fodor and B. De Baets, “A single‑point characterization of representable uninorms”,Fuzzy Sets and Systems, vol. 202, 2012, 89–99,10.1016/j.fss.2011.12.001.
  • [18] J. C. Fodor, R. R. Yager, and A. Rybalov, “Structure of Uninorms”, International Journal of Uncertainty, Fuzziness and Knowledge‑Based Systems, vol. 5, no. 4, 1997, 411–427,10.1142/S0218488597000312.
  • [19] M. Grabisch, J.‑L. Marichal, R. Mesiar, and E. Pap, “”Aggregation Functions””. In: 2008 6th International Symposium on Intelligent Systems and Informatics, 2008, 1–7, 10.1109/SISY.2008.4664901.
  • [20] S. Hu and Z. Li, “The structure of continuous uninorms”, Fuzzy Sets and Systems, vol. 124, no. 1, 2001, 43–52, 10.1016/S0165‑0114(00)00044‑0.
  • [21] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, volume 8 of Trends in Logic, Springer Netherlands: Dordrecht, 2000, 10.1007/978‑94‑015‑9540‑7.
  • [22] A. Mesiarová ‑Zemánková , “Characterization of uninorms with continuous underlying t‑norm and t‑conorm by means of the ordinal sum construction”, International Journal of Approximate Reasoning, vol. 83, 2017, 176–192, 10.1016/j.ijar.2017.01.007.
  • [23] Z. Pawlak and A. Skowron, “Rudiments of rough sets”, Information Sciences, vol. 177, no. 1, 2007, 3–27, 10.1016/j.ins.2006.06.003.
  • [24] D. Ruiz and J. Torrens, “Distributivity and conditional distributivity of a uninorm and a continuous t‑conorm”, IEEE Transactions on fuzzy Systems, vol. 14, no. 2, 2006, 180–190,10.1109/TFUZZ.2005.864087.
  • [25] D. Ruiz‑Aguilera, J. Torrens, B. De Baets, and J. Fodor, “Some Remarks on the Characterization of Idempotent Uninorms”. In: E. Hü llermeier, R. Kruse, and F. Hoffmann, eds., Computational Intelligence for Knowledge‑Based Systems Design, Berlin, Heidelberg, 2010, 425–434,10.1007/978‑3‑642‑14049‑5_44.
  • [26] J. A. Swets, “Measuring the accuracy of diagnostic systems”, Science, vol. 240, no. 4857, 1988, 1285–1293, 10.1126/science.3287615.
  • [27] C. C. Taylor, D. J. Spiegelhalter, and D. Michie, eds.,Machine Learning, Neural and Statistical Classification, Ellis Horwood Ltd.: New York, 1994.
  • [28] V. Torra and Y. Narukawa, Modeling Decisions: Information Fusion and Aggregation Operators, Cognitive Technologies, Springer: Berlin, Heidelberg: Berlin, Heidelberg, 2007, 10.1007/978‑3‑540‑68791‑7.
  • [29] R. R. Yager and A. Rybalov, “Uninorm aggregation operators”, Fuzzy Sets and Systems, vol. 80, no. 1, 1996, 111–120, 10.1016/0165‑0114(95)00133‑6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-326da00a-982a-4a1d-9cb8-45c269414f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.