PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the heat pump for a passenger electric vehicle based on refrigerant R744

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy management plays a crucial role in cabin comfort as well as enormously affects the driving range. In this paper energy balances contemplating the implementation of a heat pump and an expansion device in battery electric vehicles are elaborated, by comparing the performances of refrigerants R1234yf and R744, from –20°C to 20°C. This work calculates the coefficient of performance, energy requirements for ventilation (from 1 to 5 people in the cabin) and energy required with the implementation of a heat pump, with the employment of a code in Python with the aid of CoolProp library. The work ratio is also estimated if the work recovery device recuperates the work during the expansion. Comments on the feasibility of the implementation are as well explicated. The results of the analysis show that the implementation of an expansion device in an heat pump may cover the energy requirement of the compressor from 27% to more than 35% at 20°C in cycles operating with R744, and from 15% to more than 20% with refrigerant R1234yf, considering different compressor efficiencies. At –20°C, it would be possible to recuperate between around 30 and 24%. However, the risk of suction when operating with R1234yf at ambient temperatures below –10°C shows that the heat pump can only operate with R744. Thus, it is the only refrigerant that achieves the reduction of energy consumption at these temperatures.
Rocznik
Strony
17--36
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, 160 00 Prague 6 – Dejvice, Czech Republic
  • ESI Group, Brojova 16, 326 00 Plzeň, Czech Republic
Bibliografia
  • [1] Global electric car sales by key markets, 2010-2020 – Charts – Data & Statistics IEA, https://www.iea.org/data-and-statistics/charts/global-electric-car-sales-by-key-markets-2015-2020 (accessed 17 March 2021).
  • [2] Rietmann N., Hügler B., Lieven T.: Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. J. Clean. Prod. 261(2020), 121038. https://doi.org/10.1016/j.jclepro.2020.121038 .
  • [3] Greaves S., Backman H., Ellison A.B.: An empirical assessment of the feasibility of battery electric vehicles for day-to-day driving. Transport. Res. A-Pol. 66(2014), 226–237. https://doi.org/10.1016/j.tra.2014.05.011.
  • [4] Kempton W.: Electric vehicles: Driving range. Energ. 1 (2016), 1–2. https://doi.org/10.1038/nenergy.2016.131.
  • [5] Klamut R.: Attitude towards electric vehicles. Research on the students of a technical university. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi PAN 107(2018), 105–118 (in Polish). https://doi.org/10.24425/123719.
  • [6] Varga O., Sagoian A., Mariasiu F.: Prediction of electric vehicle range: A comprehensive review of current issues and challenges. Energies 12(2019), 946. https://doi.org/10.3390/en12050946.
  • [7] Lajunen A., Suomela J.: Evaluation of energy storage system requirements for hybrid mining loaders. IEEE T. Veh. Technol. 61(2012), 3387–3393. https://doi.org/10.1109/TVT.2012.2208485.
  • [8] Garg A., Chen F., Zhang J.: State-of-the-art of designs studies for batteries packs of electric vehicles. In: Proc. IET Int. Conf. on Intelligent and Connected Vehicles (ICV 2016). https://doi.org/10.1049/cp.2016.1181.
  • [9] Hannan M.A., Hoque M.M., Hussain A., Yusof Y., Ker P.J.: State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access 6(2018), 19362–19378. https://org/10.1109/ACCESS.2018.2817655.
  • [10] Petitjean C., Guyonvarch G., Benyahia M., Beauvis R.: TEWI analysis for different automotive air conditioning systems. In: Proc. The Future Car Congress 2000, 2000-01–1561. https://doi.org/10.4271/2000-01-1561.
  • [11] Guyonvarch G., Aloup C., Petitjean C., De Monts De Savasse : 42 V electric air conditioning systems (E-A/CS) for low emissions, architecture, comfort and safety of next generation vehicles. In: Proc. The Future Transportation Technology Conf. & Expo. 2001, 2001-01–2500. https://doi.org/10.4271/2001-01-2500.
  • [12] Bashirpour-Bonab H.: Thermal behavior of lithium batteries used in electric vehicles using phase change materials. Int. J. Energ. Res. 44(2020), 12583–12591. https://doi.org/10.1002/er.5425.
  • [13] Karimi G., Li X.: Thermal management of lithium-ion batteries for electric vehicles. Int. J. Energ. Res. 37(2013), 13–24. https://doi.org/10.1002/er.1956.
  • [14] Kizilel R., Lateef A., Sabbah R., Farid M., Selman J.R., Al-Hallaj S.: Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J. Power Sources 183(2008), 1, 370–375. https://doi.org/10.1016/j.jpowsour.2008.04.050.
  • [15] Agarwal A., Sarviya R.M.: Characterization of Commercial Grade Paraffin wax as Latent Heat Storage material for Solar dryers. Materials Today 4(2017), 779–789, Proc. 5th Int. Conf. on Materials Processing and Characterization (ICMPC 2016). https://doi.org/10.1016/j.matpr.2017.01.086.
  • [16] Ettouney H., Alatiqi , Al-Sahali M., Al-Hajirie K.: Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads. Energ. Convers. Manage. 47(2006), 211–228. https://doi.org/10.1016/j.enconman. 2005.04.003.
  • [17] Heath A.: Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali amendment). Int. Legal Mater. 56(2017), 193–205. https://doi.org/10.1017/ilm.2016.2.
  • [18] Lee Y., Jung D.: A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Appl. Therm. Eng. 35(2012), 240–242. https://doi.org/10.1016/j.applthermaleng.2011.09.004.
  • [19] Ozgur A.E., Kabul A., Kizilkan : Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a. Int. J. Low-Carb. Technol. 9(2014), 56–62. https://doi.org/10.1093/ijlct/cts054.
  • [20] Vaghela K.: Comparative evaluation of an automobile air – conditioning system using R134a and its alternative refrigerants. Energy Proced. 109(2017), 153–160, Int. Conf. on Recent Advancement in Air Conditioning and Refrigeration, RAAR 2016, 10-12 November 2016, Bhubaneswar. https://doi.org/10.1016/j.egypro. 2017. 03.083.
  • [21] Reasor P., Aute V., Radermacher R.: Refrigerant R1234yf performance comparison investigation. Refrigeration and Air Conditioning Conference 8, 2010.
  • [22] Cho H., Lee H., Park : Performance characteristics of an automobile air condi tioning system with internal heat exchanger using refrigerant R1234yf. Appl. Therm. Eng. 61(2013), 563–569. https://doi.org/10.1016/j.applthermaleng.2013.08.030.
  • [23] Direk M., Kelesoglu A., Akin A.: Drop-in performance analysis and effect of IHX for an automotive air conditioning system with R1234yf as a replacement of R134a. SV-JME 63(2017), 314–319. https://doi.org/10.5545/sv-jme.2016.4247.
  • [24] Feng L., Hrnjak P.: Experimental Study of an Air Conditioning-Heat Pump System for Electric Vehicles. In: Proc: SAE 2016 World Exhibit., 2016-01–0257. https://doi.org/10.4271/2016-01-0257.
  • [25] Wu J., Zhou G., Wang M.: A comprehensive assessment of refrigerants for cabin heating and cooling on electric vehicles. Appl. Therm. Eng. 174(2020), 115258. https://doi.org/10.1016/j.applthermaleng.2020.115258.
  • [26] Maina P., Huan Z.: A review of carbon dioxide as a refrigerant in refrigeration technology. Afr. J. Sci. 111(2015). https://doi.org/10.17159/sajs.2015/20140258.
  • [27] Song X., Lu D., Lei Q., Cai Y., Wang , Shi J., Chen J.: Experimental study on heating performance of a CO2 heat pump system for an electric bus. Appl. Therm. Eng. 190(2021), 116789. https://doi.org/10.1016/j.applthermaleng.2021.116789.
  • [28] Wu D., Hu B., Wang Z.: Vapor compression heat pumps with pure low-GWP refrigerants. Renew. Sust. Energ. Rev. 138(2021), 110571. https://doi.org/10.1016/j.rser.2020.110571.
  • [29] Lorentzen G.: Revival of carbon dioxide as a refrigerant. International Journal of Refrigeration 17(1994), 292–301. https://doi.org/10.1016/0140-7007(94)90059-0.
  • [30] Großmann H.: Comparing the refrigerant R1234yf and CO2. ATZ Worldw 118(2016), 70. https://doi.org/10.1007/s38311-016-0119-0.
  • [31] Ma Y., Liu Z., Tian H.: A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 55(2013), 156–172. https://doi.org/10.1016/j.energy.03.030.
  • [32] Li W., Liu Y., Liu R., Wang , Shi J., Yu Z., Cheng L., Chen J.L.: Performance evaluation of secondary loop low-temperature heat pump system for frost prevention in electric vehicles. Appl. Therm. Eng. 182(2021), 115615. https://doi.org/10.1016/j.applthermaleng.2020.115615.
  • [33] Menken J.C., Ricke M., Weustenfeld A., Koehler J.: Simulative analysis of secondary loop automotive refrigeration systems operated with an HFC and carbon dioxide. SAE Int. J. Passeng. Cars-Mech. Syst. 9(2016), 434–440. https://doi.org/10.4271/2016-01-9107.
  • [34] Wang D., Yu B., Hu J., Chen L., Shi J., Chen J.: Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate. Int. J.Refrig. 85(2018), 27–41. https://doi.org/10.1016/j.ijrefrig.2017.09.009.
  • [35] Wang Y., Wang D., Yu,B., Shi J., Chen J.: Experimental and numerical investigation of a CO2 heat pump system for electrical vehicle with series gas cooler configuration. Int. J. Refrig. 100(2019), 156–166. https://doi.org/10.1016/j.ijrefrig.2018.11.001.
  • [36] Bruno F., Belusko M., Halawa : CO2 refrigeration and heat pump systems – A comprehensive review. Energies 12(2019), 15, 2959. https://doi.org/10.3390/en12152959.
  • [37] Baek J.S., Groll E.A., Lawless B.: Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle. Part I: experimental investigation. Int. J. Refrig. 28(2005), 141–151. https://doi.org/10.1016/j.ijrefrig.2004.08.006.
  • [38] Ferrara G., Ferrari L., Fiaschi , Galoppi G., Karellas S., Secchi R., Tempesti D.: A small power recovery expander for heat pump COP improvement. Energ. Proced. 81(2015), 1151–1159, 69th Conf. Ital. Therm. Eng. Assoc., ATI 2014. https://doi.org/10.1016/j.egypro.2015.12.140.
  • [39] Kohsokabe H., Funakoshi S., Tojo K., Nakayama , Kohno K., Kurashige K.: Basic operating characteristics of CO2 refrigeration cycles with expander- compressor unit 10 (2006).
  • [40] Specific Heat Capacities of Air – (Updated 7/26/08). https://www.ohio.edu/mechanical/thermo/property_tables/air/air_Cp_Cv.html (accessed 6 March 2021).
  • [41] Abas N., Kalair A.R., Khan , Haider A., Saleem Z., Saleem M.S.: Natural and synthetic refrigerants, global warming: A review. Renew. Sust. Energ. Rev. 90(2018), 557–569. https://doi.org/10.1016/j.rser.2018.03.099.
  • [42] Bell H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53(2014), 6, 2498–2508. https://doi.org/10.1021/ie4033999.
  • [43] Richter M., McLinden M.O., Lemmon E.W.: Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State. ACS Publications (2011). https://doi.org/10.1021/je200369m.
  • [44] Span R., Wagner W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(1996), 1509–1596. https://doi.org/10.1063/1.555991.
  • [45] Fukuda S., Kojima H., Kondou C., Takata N., Koyama S.: Experimental assessment on performance of a heat pump cycle using R32/R1234yf and R744/R32/R1234yf. In; Proc. Int. Refrigeration and Air Conditioning Conf. 2016.
  • [46] Shin Y., Cho H.: Performance comparison of a truck refrigeration system with R404A, R134a, R1234yf, and R744 refrigerants under frosting conditions. Int. J. Air-Cond. Ref. 24(2016), 1650005. https://doi.org/10.1142/S201013251650005X.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3269ee78-9f4a-4575-8271-d0d07aedda03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.