PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance improvement of a novel zero cross-correlation code using Pascal’s triangle matrix for SAC-OCDMA systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to minimize the receiver complexity and improve the performance of the spectral amplitude coding - optical code division multiple access system, a novel one-dimensional zero cross-correlation code using Pascal’s triangle matrix has been suggested. This research article shows that the position of chip “1” in the code sequences is one of the important factors affecting system performance. In fact, mathematical results show that, for the allwavelength direct detection, it is possible to reduce the number of filters without sacrificing system performance. In addition, compared to one-wavelength direct detection, the signalto-noise ratio value is increased with an increasing weight by using wide-bandwidth filters as decoders. Performance of the proposed system in terms of the minimum bit error rate is validated using the OptiSystem software. Compared with the previous systems at 622 Mbps, the suggested system gave the best values of bit error rate of around 10⁻⁴³, 10⁻³⁵, and 10⁻²⁶ for higher, medium, and lower service demand, respectively.
Rocznik
Strony
art. no. e140550
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., tab.
Twórcy
autor
  • Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, 22000 Algeria
  • Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, 22000 Algeria
  • Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, 22000 Algeria
autor
  • Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, 22000 Algeria
Bibliografia
  • [1] Garba, A. A., Yim, R. M. H., Bajcsy, J. & Chen, L. R. Analysis of optical CDMA signal transmission: capacity limits and simulation results. EURASIP J. Appl. Signal Process. 10, 1603–1616 (2005). https://doi.org/10.1155/ASP.2005.1603
  • [2] Stok, A. & Sargent, E. H. The role of optical CDMA in access networks. IEEE Commun. Mag. 40, 83–87 (2002). https://doi.org/10.1109/MCOM.2002.1031833
  • [3] Chen, K. S., Chen, Y. C. & Liao, L. G. Advancing high-speed transmissions over OCDMA networks by employing an intelligently structured receiver for noise mitigation. Appl. Sci. 8, 1–14 (2018). https://doi.org/10.3390/app8122408
  • [4] Kaur, S. & Singh, S. Review on developments in all-optical spectral amplitude coding techniques. Opt. Eng. 57, 116102 (2018). https://doi.org/10.1117/1.oe.57.11.116102
  • [5] Gupta, S. & Goel. A. New bipolar spectral amplitude code for cardinality enhancement in OCDMA network. J. Opt. 49, 1–8 (2020). https://doi.org/10.1007/s12596-020-00589-4
  • [6] Driz, S. & Djebbari, A. Performance evaluation of sub-carrier multiplexed SAC-OCDMA system using optimal modulation index. J. Opt Commun. 40, 83–92 (2019). https://doi.org/10.1515/joc-2017-0044
  • [7] Aldhaibani, A. O., Aljunid, S. A., Anuar, M. S. & Arief, A. R. Increasing performance of SAC-OCDMA by combine OFDM technique. J. Theor. Appl. Inf. Technol. 66, 634–637 (2014).
  • [8] Ouis, E., Driz, S. & Fassi, B. Enhancing confidentiality protection for ZCZ-OCDMA network using line selection and wavelength conversion based on SOA. J. Opt. Commun. 000010151520200089 (2020). https://doi.org/10.1515/joc-2020-0089
  • [9] Jyoti, V. & Kaler, R. S. Security enhancement of OCDMA system against eavesdropping using code-switching scheme. Optik 122, 787–791(2011). https://doi.org/10.1016/j.ijleo.2010.05.027
  • [10] Moghaddasi, M., Seyedzadeh, S., Glesk, I., Lakshminarayana, G. & Anas, S. B. A. DW-ZCC code based on SAC–OCDMA deploying multi-wavelength laser source for wireless optical networks. Opt. Quant. Electron. 49, 393 (2017). https://doi.org/10.1007/s11082-017-1217-y
  • [11] Morsy, M. A. Analysis and design of weighted MPC in incoherent synchronous OCDMA network. Opt. Quant. Electron. 50, 387 (2018). https://doi.org/10.1007/s11082-018-1657-z
  • [12] Abd El-Mottaleb, S. A., Fayed, H. A., Aly, M. H., Rizk, M. R. & Ismail, N. E. An efficient SAC-OCDMA system using three different codes with two different detection techniques for maximum allowable users, Opt. Quant. Electron. 51, 354 (2019). https://doi.org/10.1007/s11082-019-2065-8
  • [13] Fassi, B. & Taleb-Ahmed, A. A. New construction of optical zero-correlation zone codes. J. Opt. Commun. 39, 359–368 (2018). https://doi.org/10.1515/joc-2017-0214
  • [14] Driz, S., Fassi, B., Mansour, M. A. & Taleb-Ahmed, A. FPGA implementation of a novel construction of optical zero-correlation zone codes for OCDMA systems. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0048
  • [15] Kandouci, C., Djebbari, A. & Taleb-Ahmed, A. A new family of 2D-wavelength-time codes for OCDMA system with direct detection. Optik 135, 8–15 (2017). https://doi.org/10.1016/j.ijleo.2017.01.065
  • [16] Ahmed, H. Y., Zeghid, M., Imtiaz, W. A., Sharma, T. & Chehri, A. An efficient 2D encoding/decoding technique for optical communication system based on permutation vectors theory. Multimed. Syst. 27, 691–707 (2020). https://doi.org/10.1007/s00530-020-00711-3
  • [17] Imtiaz, W. A., Ahmed, H. Y., Zeghid, M. & Sharief, Y. Two dimensional optimized enhanced multi diagonal code for OCDMA passive optical networks. Opt. Quant. Electron. 52, 33 (2020). https://doi.org/10.1007/s11082-019-2145-9
  • [18] Jellali, N., Najjar, M., Ferchichi & M., Janyani, V. Performance enhancement of the 3D OCDMA system by using dynamic cyclic shift and multi-diagonal codes. Photonic Netw. Commun. 37, 63–74 (2019). https://doi.org/10.1007/s11107-018-0793-5
  • [19] Anuar, M. S., Aljunid, S. A., Saad, N. M. & Hamzah, S. M. New design of spectral amplitude coding in OCDMA with zero cross-correlation. Opt. Commun. 282, 2659–2664 (2009). https://doi.org/10.1016/j.optcom.2009.03.079
  • [20] Nisar, K. S., Sarangal, H. & Thapar, S. S. Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique. Photonic Netw. Commun. 37, 75–82 (2019). https://doi.org/10.1007/s11107-018-0794-4
  • [21] Kaur, R. & Kaler, R. S. Performance of zero cross correlation resultant weight spectral amplitude codes in lower Earth orbit-based optical wireless channel system. Int. J. Commun. 33, e4456 (2020). https://doi.org/10.1002/dac.4456
  • [22] Nisar, K. S., Djebbari, A. & Kandouci, C. Development and performance analysis zero cross correlation code using a type of Pascal's triangle matrix for spectral amplitude coding optical code division multiple access networks. Optik. 159, 14–20 (2018). https://doi.org/10.1016/j.ijleo.2018.01.054
  • [23] Edwards, A. W. F. Pascal’s Arithmetical Triangle: The Story of a Mathematical Idea. (Johns Hopkins University Press, 2002).
  • [24] Németh, L. & Szalay, L. Power sums in hyperbolic Pascal triangles. Analele Universitatii “Ovidius" Constanta-Seria Matematica 26, 189–203 (2018). https://doi.org/10.2478/auom-2018-0012
  • [25] Kaur, S. & Singh, S. Review on developments in all-optical spectral amplitude coding techniques. Opt. Eng. 57, 116102 (2018). https://doi.org/10.1117/1.oe.57.11.116102
  • [26] Kumari, M., Sharma, R. & Sheetal, A. Performance analysis of high speed backward compatible TWDM-PON with hybrid WDM–OCDMA PON using different OCDMA codes. Opt. Quant. Electron. 52, 1–59 (2020). https://doi.org/10.1007/s11082-020-02597-x
  • [27] Zhao, H., Wu, D. & Fan, P. Constructions of optimal variable‐weight optical orthogonal codes. J. Comb. 18, 274–291 (2010). https://doi.org/10.1002/jcd.20246
  • [28] Kakaee, M. H., Seyedzadeh, S., Fadhil, H. A., Anas, S. B. A. & Mokhtar, M. Development of multi-service (MS) for SAC-OCDMA systems. Opt. Laser Technol. 60, 49–55(2014). https://doi.org/10.1016/j.optlastec.2014.01.002
  • [29] Kumawat, S. & Maddila, R. K. Development of ZCCC for multi-media service using SAC-OCDMA systems. Opt. Fiber Technol. 39, 12–20 (2017). https://doi.org/10.1016/j.yofte.2017.09.015
  • [30] Li, X. et al. Development and performance improvement of a novel zero cross-correlation code for SAC-OCDMA systems. J. Opt. Commun. 000010151520200086 (2020). https://doi.org/10.1515/joc-2020-0086
  • [31] Garadi, A., Djebbari, A. & Taleb-Ahmed, A. Exact analysis of signal-to-noise ratio for SAC-OCDMA system with direct detection, Optik 145, 89–94 (2017). http://doi.org/doi:10.1016/j.ijleo.2017.07.038
  • [32] Imtiaz, W. A., Ilyas, M. & Khan, Y. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code. Infrared Phys. Technol. 79, 36–44 (2016). https://doi.org/10.1016/j.infrared.2016.09.006
  • [33] Rec, I. T. U. (1988). G. 707: Synchronous Digital Hierarchy - Bit Rates. International Telecommunication Union, ITU-T. (1988).
  • [34] Kartalopoulos, S. V. Communication Networks. in Next Generation Intelligent Optical Networks, from Access to Backbone. (Springer, Boston, MA, 2008). https://doi.org/10.1007/978-0-387-71756-2
  • [35] Calligaris Jr, A. O. & Silva, M.T.C. Multichannel Bandpass Optical Filter Integrated in Tandem For High-Speed Wavelength Division Multiplexed Systems. Revista Científica Periódica–Telecomunicações. 2, 28-29(1999). https://www.inatel.br/revista/ downloads/marco-setembro-1999-s883750-1
  • [36] Naghar, A., Aghzout, O., Alejos, A. V., Sanchez, M. G. & Essaaidi, M. Design of compact wideband multi-band and ultra-wideband band pass filters based on coupled half wave resonators with reduced coupling gap. IET Microw. Antennas Propag. 9, 1786–1792 (2015). https://doi.org/10.1049/iet-map.2015.0188
  • [37] Adbulqader, S. G., Fadhil, H. A., Aljunid, S. A. & Safar, A. M. Performance Analysis of an OCDMA System Based on SPD Detection Utilizing Different Type of Optical Filters for Access Networks. in Advanced Computer and Communication Engineering Technology. (Cham Springer International Publishing, 2015). https://doi.org/10.1007/978-3-319-07674-4_31
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3267fbb0-70f1-42b6-86a2-fd2e3c7c9e33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.