PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning based approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The newly identified Coronavirus pneumonia, subsequently termed COVID-19, is highly transmittable and pathogenic with no clinically approved antiviral drug or vaccine available for treatment. The most common symptoms of COVID-19 are dry cough, sore throat, and fever. Symptoms can progress to a severe form of pneumonia with critical complications, including septic shock, pulmonary edema, acute respiratory distress syndrome and multi-organ failure. While medical imaging is not currently recommended in Canada for primary diagnosis of COVID-19, computer-aided diagnosis systems could assist in the early detection of COVID-19 abnormalities and help to monitor the progression of the disease, potentially reduce mortality rates. In this study, we compare popular deep learningbased feature extraction frameworks for automatic COVID-19 classification. To obtain the most accurate feature, which is an essential component of learning, MobileNet, DenseNet, Xception, ResNet, InceptionV3, InceptionResNetV2, VGGNet, NASNet were chosen amongst a pool of deep convolutional neural networks. The extracted features were then fed into several machine learning classifiers to classify subjects as either a case of COVID-19 or a control. This approach avoided task-specific data pre-processing methods to support a better generalization ability for unseen data. The performance of the proposed method was validated on a publicly available COVID-19 dataset of chest X-ray and CT images. The DenseNet121 feature extractor with Bagging tree classifier achieved the best performance with 99% classification accuracy. The second-best learner was a hybrid of the a ResNet50 feature extractor trained by LightGBM with an accuracy of 98%.
Twórcy
  • Department of Computer Science, University of Saskatchewan, Canada
  • Department of Neurology and Neurological, University of Stanford, USA
  • Department of Medical Imaging, University of Saskatchewan, Canada
  • Department of Computer Science, University of Saskatchewan, Canada
autor
  • Department of Computer Science, University of Saskatchewan, Canada
Bibliografia
  • [1] Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. Covid-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020;24:91–8. https://doi.org/ 10.1016/j.jare.2020.03.005. URL: http://www.science direct.com/science/article/pii/S2090123220300540.
  • [2] Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (covid-19) infections: A meta-analysis. Clin Chim Acta 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022. URL: http:// www.sciencedirect.com/science/article/pii/ S0009898120301248.
  • [3] Zhang T, Wu Q, Zhang Z. Probable pangolin origin of sarscov-2 associated with the covid-19 outbreak. Curr Biol 2020;30:1346–1351.e2. https://doi.org/10.1016/j. cub.2020.03.022. URL: http:// www.sciencedirect.com/science/article/pii/ S0960982220303602.
  • [4] Guo H, Zhou Y, Liu X, Tan J. The impact of the covid-19 epidemic on the utilization of emergency dental services. J Dental Sci 2020. https://doi.org/10.1016/j.jds.2020.02.002. URL: http://www.sciencedirect.com/science/article/pii/ S1991790220300209.
  • [5] Chavez S, Long B, Koyfman A, Liang SY. Coronavirus disease (covid-19): A primer for emergency physicians. Am J Emerg Med 2020. https://doi.org/10.1016/j.ajem.2020.03.036. URL: http://www.sciencedirect.com/science/article/pii/ S0735675720301789.
  • [6] Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. J Autoimm 2020;109. https://doi.org/10.1016/j.jaut.2020.102433. URL: http://www.sciencedirect.com/science/article/pii/ S0896841120300469 102433.
  • [7] Liu H, Liu F, Li J, Zhang T, Wang D, Lan W. Clinical and ct imaging features of the covid-19 pneumonia: Focus on pregnant women and children. J Infect 2020. https://doi.org/ 10.1016/j.jinf.2020.03.007. URL: http://www.sciencedirect. com/science/article/pii/S0163445320301183.
  • [8] WHO, Coronavirus disease (COVID-19) Pandemic, 2020. URL: https://www.who.int/emergencies/diseases/novelcoronavirus-2019.
  • [9] Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity of covid-19 in south korea. Int J Infect Diseas 2020;93:339–44. https://doi.org/10.1016/j. ijid.2020.03.031. URL: http://www.sciencedirect.com/ science/article/pii/S1201971220301508.
  • [10] CDC, Coronavirus Infections, 2020. URL: https://phil.cdc.gov/ Details.aspx?pid=23313.
  • [11] CDC, Coronavirus Infections – Transmission electron microscopic image, 2020. URL: https://phil.cdc.gov/Details. aspx?pid=23354.
  • [12] Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, Shi H, Zhou M. Temporal changes of ct findings in 90 patients with covid-19 pneumonia: a longitudinal study. Radiology 2020;200843.
  • [13] Kassani SH, Kassani PH, Wesolowski MJ, Schneider KA, Deters R. Depthwise separable convolutional neural network for skin lesion classification. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE, 2019, p. 1–6.
  • [14] Hemdan EED, Shouman MA, Karar ME. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images, arXiv preprint arXiv:2003.11055 (2020).
  • [15] Cohen JP, Morrison P, Dao L. Covid-19 image data collection, arXiv:2003.11597 (2020). URL:https://github.com/ ieee8023/covid-chestxray-dataset.
  • [16] Rosebrock Adrian. Detecting COVID-19 in X-ray images with Keras, TensorFlow, and Deep. Learning 2020. URL: https:// www.pyimagesearch.com/2020/03/16/detecting-covid-19-inx-ray-images-with-keras-tensorflow-and-deep-learning/.
  • [17] Barstugan M, Ozkaya U, Ozturk S. Coronavirus (covid-19) classification using ct images by machine learning methods, arXiv preprint arXiv:2003.09424 (2020).
  • [18] Cristianini N, Shawe-Taylor J, et al. An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press; 2000.
  • [19] Wang L, Wong A. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest radiography images, arXiv preprint arXiv:2003.09871 (2020).
  • [20] Kaggle, Kaggle’s Chest X-Ray Images (Pneumonia) dataset, 2020. URL: https://www.kaggle.com/paultimothymooney/ chest-xray-pneumonia.
  • [21] Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, Khan, MK. Diagnosing covid-19 pneumonia from x-ray and ct images using deep learning and transfer learning algorithms, arXiv preprint arXiv:2004.00038 (2020).
  • [22] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012. p. 1097–1105.
  • [23] Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep learning for coronavirus (covid-19) detection, arXiv preprint arXiv:2003.10769 (2020).
  • [24] Hall, LO, Paul, R, Goldgof, DB, Goldgof GM. Finding covid-19 from chest x-rays using deep learning on a small dataset, arXiv preprint arXiv:2004.02060 (2020).
  • [25] Farooq M, Hafeez A. Covid-resnet: A deep learning framework for screening of covid19 from radiographs, arXiv preprint arXiv:2003.14395 (2020).
  • [26] Boureau Y-L, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th international conference on machine learning (ICML10). p. 111–8.
  • [27] Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In: International Conference Image Analysis and Recognition Springer. p. 737–44.
  • [28] Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: A review. Neurocomputing 2016;187:27–48.
  • [29] Quinlan JR. Induction of decision trees. Mach Learn 1986;1:81–106.
  • [30] Breiman L. Random forests. Mach Learn 2001;45:5–32.
  • [31] Chen T, Guestrin C. XGBoost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, ACM Press, New York, New York, USA, 2016. p. 785–794. URL: http://dl.acm. org/citation.cfm?doid=2939672.2939785. Doi: 10.1145/ 2939672.2939785.
  • [32] Freund Y, Schapire RE. A desicion-theoretic generalization of on-line learning and an application to boosting. In: European conference on computational learning theory Springer. p. 23–37.
  • [33] Breiman L. Bagging predictors. Mach Learn 1996;24:123–40.
  • [34] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in neural information processing systems, 2017. p. 3146–3154.
  • [35] Kassani SH, Kassani PH, Wesolowski MJ, Schneider KA, Deters R. Breast cancer diagnosis with transfer learning and global pooling, arXiv preprint arXiv:1909.11839 (2019).
  • [36] Khan S, Islam N, Jan Z, Din IU, Rodrigues JJC. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett 2019;125:1–6.
  • [37] Mehra R et al. Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express 2018;4:247–54.
  • [38] Kassani SH, Kassani PH, Wesolowski MJ, Schneider KA, Deters R. Automatic polyp segmentation using convolutional neural networks. In: Canadian Conference on Artificial Intelligence, Springer. p. 290–301.
  • [39] Lu S, Lu Z, Zhang Y-D. Pathological brain detection based on alexnet and transfer learning. J Comput Sci 2019;30:41–7.
  • [40] Kassani SH, Kassani PH, Wesolowski MJ, Schneider KA, Deters R. Classification of histopathological biopsy images using ensemble of deep learning networks. In: Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, CASCON ’19. USA: IBM Corp; 2019. p. 92–9.
  • [41] Liu Z, Cao Y, Li Y, Xiao X, Qiu Q, Yang M, Zhao Y, Cui L. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Comput Methods Programs Biomed 2020;187 105019.
  • [42] Liu S, Tian G, Xu Y. A novel scene classification model combining resnet based transfer learning and data augmentation with a filter. Neurocomputing 2019;338:191–206.
  • [43] Sridar P, Kumar A, Quinton A, Nanan R, Kim J, Krishnakumar R. Decision fusion-based fetal ultrasound image plane classification using convolutional neural networks. Ultrasound Med Biol 2019;45:1259–73.
  • [44] Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y, Yi Z. Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl Based Syst 2019;175:12–25.
  • [45] Dourado Jr CM, da Silva SPP, da Nóbrega RVM, Barros ACdS, Reboucas Filho PP, de Albuquerque VHC. Deep learning iot system for online stroke detection in skull computed tomography images. Comput Networks 2019;152:25–39.
  • [46] Çinar A, Yildirim M. Detection of tumors on brain mri images using the hybrid convolutional neural network architecture. Med Hypotheses 2020;109684.
  • [47] Cogan T, Cogan M, Tamil L. Mapgi: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Comput Biol Meds 2019;111 103351.
  • [48] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications andrew. Rep Pract Oncol Radioth. 2009. doi: 10.1016/S1507-1367(10)60022-3. ArXiv:1704.04861.
  • [49] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional network. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017. doi:10.1109/CVPR.2017.243. ArXiv:1608.06993.
  • [50] Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017. doi:10.1109/CVPR.2017.195. ArXiv:1610.02357.
  • [51] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/ 10.1109/CVPR.2016.308. ArXiv:1512.00567.
  • [52] Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence AAAI. ArXiv:1602.07261.
  • [53] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.90. ArXiv:1512.03385.
  • [54] Simonyan K. A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).
  • [55] Zoph B, Vasudevan V, Shlens J, Le QV. Learning Transferable Architectures for Scalable Image Recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/ CVPR.2018.00907. ArXiv:1707.07012.
  • [56] Kaggle, RSNA Pneumonia Detection Challenge, 2020. URL: https://www.kaggle.com/c/rsna-pneumonia-detectionchallenge.
  • [57] Ausawalaithong W, Thirach A, Marukatat S, Wilaiprasitporn T. Automatic lung cancer prediction from chest x-ray images using the deep learning approach. In: 2018 11th Biomedical Engineering International Conference (BMEICON), IEEE, 2018. p. 1–5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-326526aa-1010-455f-b555-75dd08d653a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.